Thomson Scattering Signal and Uncertainty

The Alcator C-Mod incoherent Thomson scattering system has the following parameters.

1	J
1.064	$\mu { m m}$
8	ns
90	deg
3	mm
6	mm
0.14	m
1	m
50	%
20	%
	$ \begin{array}{r} 1 \\ 1.064 \\ 8 \\ 90 \\ 3 \\ 6 \\ 0.14 \\ 1 \\ 50 \\ 20 \\ \end{array} $

Using non-relativistic Thomson scattering approximations, estimate the following characteristics when scattering from a plasma of the following approximate (uniform) parameters: $n_e = 2. \times 10^{20} \text{ m}^{-3}$, $T_e = 2 \text{ keV}$, $Z_{\text{eff}} = 1$, diameter along viewing chord 0.4 m.

- (a) The value of $k\lambda_D$ (to check we are really in the incoherent regime).
- (b) The total number of scattered photons detected over the entire scattered spectrum (for a single laser pulse).
- (c) The fractional uncertainty in the measurement of plasma density resulting purely from scattered-photon statistics. [Hint: consult Appendix 2.]
- (d) The spectral width of the scattered signal out to a frequency (or wavelength) displacement where the signal has fallen to e^{-2} of its peak intensity.
- (e) The total number of plasma-light photons detected in this spectral width, during a time period of 8ns (the pulse duration), assuming that all the photons arise from bremsstrahlung.
- (f) The number of plasma-light photons if the time period is 160 ns (to accommodate detector speed limitations) and the plasma emission is 10 times higher than bremsstrahlung (because of impurity radiation).
- (g) The photon-statistical density-measurement fractional-uncertainty including plasmalight photons of case (f).

Since the non-relativistic spectral distribution has a Gaussian shape, one can use wellestablished statistical theorems to show that the standard-deviation in the measurement of its width from a sample of N photons is equal to the standard-deviation of the distribution times $1/\sqrt{2(N-1)}$ (in the absence of noise photons). It is approximately a factor of $\sqrt{1+4N_b/N}$ larger in the presence of a uniform background of N_b noise photons.

(h) What is the approximate fractional uncertainty in T_e measurement arising from photon statistics?