## Principles of Plasma Diagnostics, Errata

Corrections to the second edition 2002, I.H.Hutchinson

| Page | Erroneous version | Correct version |
| :---: | :---: | :---: |
| 20 | Eq 2.1.17 reads $\nu_{e i} \approx v_{i} \tau$ | Eq $2.1 .1^{77}$ should |
| 34/5 | which gives us $2 \pi R$ times the normal derivative of the flux: $\hat{\mathbf{e}}_{\phi} \cdot\left(\hat{\mathbf{n}} \wedge \mathbf{B}_{p}\right)=$ $2 \pi R \hat{\mathbf{n}} . \nabla \psi$. | which gives us the normal derivative of the flux: $\hat{\mathbf{e}}_{\phi} .\left(\hat{\mathbf{n}} \wedge \mathbf{B}_{p}\right)=(2 \pi R)^{-1} \hat{\mathbf{n}} . \nabla \psi$. |
| 41 | measurements of $B_{\theta}, B$ | measurements of $B_{\theta}, B_{\phi}$ |
| 88 | the tangential $x$-velocity $v_{t}=v_{d} \sin \theta$ | the tangential $x$-velocity $v_{t}=v_{d} / \sin \theta$ |
| 113 | Labeling in Fig 4.1 reads $\frac{2 E_{1} E_{2}}{E_{1}^{2}+E_{2}^{2}}$ | Labeling in Fig 4.1 should read $2 E_{1} E_{2}$ |
| 137 | Eq 4.3.15 reads ... $\frac{X Y \cos \theta\left(F^{2}+1\right)^{1 / 2}}{F} \ldots$ | should read $\ldots \frac{X Y \cos \theta}{\left(1-Y^{2}\right)} \frac{\left(F^{2}+1\right)^{1 / 2}}{F}$ |
| 139 | Eqs 4.3.23, $25 \mathrm{read} \ldots \frac{X Y^{2} \sin ^{2} \theta}{2\left(1-Y^{2}\right)} \sin 2 \beta \ldots$ | should read $\ldots \frac{X Y^{2} \sin ^{2} \theta}{4\left(1-Y^{2}\right)} \sin 2 \beta$.. |
| 141 | Kunze | should read Kunz |
| 153 | Ex 4.8 reads ... from $\mathrm{Eq}(4.5 .4)$ | Ex 4.8 should read ... from Eq(4.5.5) |
| 157 | Eq 5.1.13 reads ... $\mathrm{e}^{-i \omega t}$. | Eq 5.1.13 should read ...e ${ }^{\text {imt }}$. |
| 157 | Eq 5.1.14 reads ... $\{\hat{\mathbf{R}} \wedge(\hat{\mathbf{R}} \ldots$ | Eq 5.1.14 should read ... $\hat{\mathbf{R}} \wedge\{(\hat{\mathbf{R}} \ldots$ |
| 162 | Eq 5.2.16 reads ... $\cos \theta+\beta_{\\|} \cdot \cdots$ | Eq 5.2.16 should read ... $\cos \theta-\beta_{\\|}$. |
| 165 | Fig 5.2 caption. | Add: Only the mass-shift curve is numerically to scale. |
| 191 | reciprocal of Euler's constant | exponential of Euler's constant |
| 211 | Eq 5.6.31,2 read ... $\frac{8 \pi}{3 \sqrt{3 m^{2} c^{3}}}$ | Eq 5.6.31,2 should read $\ldots \frac{8 \pi}{3 \sqrt{3} m^{2} c^{3}}$ |
| 220 | Eq 6.1.13 reads ... $\left.\left\langle i, m_{i}\right\| \mathbf{D}\left\|j, m_{i}\right\rangle\right\|^{2}$. | Eq 6.1.13 should read $\left.\ldots\left\langle i, m_{i}\right\| \mathbf{D}\left\|j, m_{j}\right\rangle\right\|^{2}$ |
| 226 | Eq 6.2.13 reads $\ldots \frac{\left\langle\sigma_{k, k+1} v\right\rangle}{\Sigma_{l}\left\langle\sigma_{k+1, k i} v\right\rangle}$ | Eq 6.2.13 should read $\ldots \frac{\left\langle\sigma_{k, k+1} v\right\rangle}{\Sigma_{i}\left\langle\sigma_{k+1, k i} v\right\rangle}$, |
| 235 | electric field $E(\omega)$ by Parseval' | electric field $E(\nu)$ by Parseval's |
| 244 | Fig 6.6 Dielectronic Recombination | curve should be higher by a factor |
| 246 | where $l$ is the intensity | where $I$ is the intensity |
| 279 | where $\nu_{s}=2 \pi \omega_{s}$ denotes the $\ldots$ | where $\omega_{s}=2 \pi \nu_{s}$ denotes the |
| 282 | $\ldots$ by dividing by $f\left\langle S_{i}\right\rangle n_{e} d^{3} r \ldots$ | $\ldots$ by dividing by $\int\left\langle S_{i}\right\rangle n_{e} d^{3} r$ |
| 288 | Eq 7.2.32 reads $\ldots \frac{8 \pi}{3 \sqrt{3 m^{2} c^{3}} \ldots}$ | Eq 7.2.32 should read $\ldots \frac{8 \pi}{3 \sqrt{3} m^{2} c^{3}} \ldots$ |
| 293 | Eq 7.3.4 reads ...e ${ }^{i\left(\omega_{s} t-1\right.}$ | Eq 7.3.4 should read ...e $\mathrm{e}^{i\left(\omega_{s} t^{\prime}-\mathbf{k}_{s} \cdot \mathbf{r}^{\prime}\right)}$.. |
| 294 | Eq 7.3.9 reads ...e ${ }^{i\left(\omega r^{\prime}-\right.}$ | Eq 7.3.9 should read ...e $\mathrm{e}^{i\left(\omega t^{\prime}-\mathbf{k} . \mathbf{r}^{\prime}\right)} \ldots$ |
| 294 | Eq 7.3.10 reads ... $=A\left\langle S_{t}\right\rangle=P_{i}$ | Eq 7.3.10 should read $\ldots=A\left\langle S_{i}\right\rangle=P_{i}$ |
| 316 | sources $\mathbf{j}_{0}$ | sources $\mathbf{j}_{0}$ |
| 323 | Fig 8.1 caption: ... charge exchange $\sigma_{e}$ | should read ... charge exchange $\sigma_{c}$ |
| 326 | Eq 8.1.7 reads $\ldots+\left(\sigma_{p}+\sigma_{e}\right) n_{i}$ | Eq 8.1.7 should read $\ldots+\left(\sigma_{p}+\sigma_{c}\right) n_{i}$ |
| 327 | $\alpha \approx n_{i}\left(\sigma_{p}+\sigma_{e}\right)$ | $\alpha \approx n_{i}\left(\sigma_{p}+\sigma_{c}\right)$ |
| 327 | $E q$ 8.1.8 $\ldots\left(\sigma_{p}+\sigma_{e}\right)$ | $E q$ 8.1.8 $\ldots\left(\sigma_{p}+\sigma_{c}\right)$ |
| 348 | the quantity $\frac{1}{2} m_{e} v^{2} / 2 R_{y}$ by | the quantity $\frac{1}{2} m_{e} v^{2} / R_{y}$ by |
| 348 | divided by $2 R_{y} m_{\text {proton }} / m_{e}=25 \mathrm{keV}$. | divided by $R_{y} m_{\text {proton }} / m_{e}=25 \mathrm{keV}$. |


| 350 | Table 8.1 contains $\left(B^{4}+\right.$ line $) \quad 4946.0$ | should contain 494.60 |
| :--- | :--- | :--- | :--- |
| 355 | Appendix E | Appendix 5 |
| 356 | Appendix E | Appendix 5 |
| 414 | Cyclotron frequency $\omega$ | Cyclotron frequency $\Omega$ |
| 414 | Bohr radius $a_{0} \quad \hbar 4 \pi \epsilon_{0} / e^{2} m_{e}=$ | Bohr radius $a_{0} \hbar^{2} 4 \pi \epsilon_{0} / e^{2} m_{e}=$ |
| 427 | Dodel, G and Kunze | Dodel, G and Kunz |
| 430 | Knudsen, H. ... 23:579 | Knudsen, H. ... 23:597 |
| 430 | Laframboise ... In ... Rarified Gas... | Laframboise ... In ... Rarefied Gas... |

