
Graphics for Inclusion in Electronic Documents

Ian Hutchinson

February 6, 2005

Abstract

How does one produce portable graphics files that can be imported into other
documents, especially TeX documents? Ways that images become unportable are
discussed as well as good-practice guidelines. The advice is aimed mostly at linux or
similar operating systems which have a wealth of open-source command-line tools.

Contents

1 The Problem 2

2 Postscript 2
2.1 Encapsulated Postscript . 3
2.2 Bounding Boxes . 3
2.3 Binary Garbage . 5
2.4 Line Ends . 5
2.5 Orientation . 6

3 Portable Document Format (PDF) 6
3.1 Converting from PDF to PS . 6
3.2 Converting from PS to PDF . 7
3.3 Fonts . 7

4 Using pstoedit and xfig 8

5 Bitmap Formats 9
5.1 PNM to PS . 9
5.2 JPEG . 10
5.3 GIF . 10
5.4 PNG . 10
5.5 Combined Vector and Bitmap Graphics . 10

6 Scanned Images of Line Drawings 11

7 LaTeX Desperation Tweaks 11

1

8 Summaries 12
8.1 Problem diagnosis . 12
8.2 Tools . 12
8.3 Instructions to graphics authors . 13

9 Conclusion 14

1 The Problem

In producing modern documents, images are often essential. The ability of computer viewing
to provide graphic information, and the bandwidth of most modern networks makes graphic
presentation truly feasible. However, graphics have many different incompatible formats.
Many formats are inappropriate for high quality graphics. Many are not portable between
operating systems or even different computers. Therefore many embarrassments occur from
presentations that have not paid sufficient attention to portability, and endless hours are
spent trying to correct weaknesses and portability problems in graphics.

I was motivated to write this document by experience producing a high-quality publica-
tion of some 200 pages with input from a dozen people, all using different computers and
software tools. LaTeX was the ultimate layout engine. It is an extremely powerful way of
producing a properly structured document, and can handle graphics in the form of postscript
(PS) or PDF (when producing PS or PDF output respectively). In principle the requirement
that was placed on authors, to provide PS files with proper bounding boxes, ought to have
been sufficient to enable the process to go smoothly. That was far from the case. So I wrote
down some of the lessons learned from this and other related experience.

This document is not intended to explain how to do graphics importation in TeX or
LaTeX. It is assumed the reader knows how to do that, or doesn’t need to know. Many
web resources exist that address these importation techniques as well as files in the local tex
installation, available on linux as /usr/share/texmf/doc/latex/graphics/epslatex.ps.
The emphasis here is on getting figures into a form that will import properly. Even seriously
broken figures can sometimes be fixed with internal tweaks of the TeX importation, but that
is very troublesome, and with care can be avoided.

2 Postscript

Postscript is, of course capable of representing the entire spectrum of graphic objects: vector
graphics (lines, regions, fills etc), bitmaps, and fonts. But its bitmap capabilities are cum-
bersome in some cases. Vector graphics are by far the best way to represent high quality
line drawings, the staple of much technical publishing. For professional purposes the loss of
resolution and visual quality caused by converting to a bitmap should never be permitted
till the final display.

2

http://tex.loria.fr/english/prod-graph.html

2.1 Encapsulated Postscript

Much confusion surrounds the difference between encapsulated postscript (EPS) and just
plain vanilla postscript (PS). The EPS format specification is at http://partners.adobe.
com/asn/developer/pdfs/tn/5002.EPSF_Spec.pdf. A useful summary may be found at
http://netghost.narod.ru/gff/graphics/summary/epsf.htm. There is no difference be-
tween “EPSF” and “EPS”.

The requirements that make a PS file also an EPS are

1. EPS is a single page;

2. a few obscure PS commands are forbidden in EPS;

3. EPS must have certain comments, including a bounding box comment.

Any self-respecting PS output ought also to have the key comments, in which case it will
generally be an EPS file if it is one page; but some PS files aren’t self-respecting.

Some kinds of EPS files are not valid PS files. So we have the unpleasant situation that
though they intersect, neither PS nor EPS is a subset of the other. Postscript is ASCII (plain
text). Some EPS files have binary data added to them representing a preview bitmap. This
possibility is unfortunately part of the EPS specification. Binary preview data is a cause
of many incompatibility problems and prevents a file containing it from being portable to
different platforms in many instances. There is therefore a more portable preview format,
EPSI, standing for encapsulated postscript interchange, which is ASCII, and leaves a file in
the state that it is (also) a valid PS file. For present purposes, EPSF binary previews are
poison; EPSI previews are more benign but still unwanted for TeX.

2.2 Bounding Boxes

The main thing that a publishing program needs to know about a graphic it is importing
is its size and shape. Normally the program has the ability to scale the graphic to fit a
specified area provided it knows the original size. Postscript files conventionally provide this
information through comments that conform to the “Encapsulated” postscript conventions.
The most important such comment for present purposes is the BoundingBox comment. It
has the form:

%%BoundingBox: 0 0 520 685

which conventionally defines the smallest rectangle that encloses all the drawn parts of the
graphic with little or no margin.

Perhaps the most frequent problem for importing graphics is that postscript files are often
produced with an incorrect bounding box. This is the fault of the software that produced
it, or occasionally of the user, in not realizing that a large margin should be avoided when
preparing figures for importation into another document. Frequently, PS files produced for
printing use the size of the paper as the bounding box rather than the size of the drawn
area.1

1According to Scott Pakin, you can sometimes tell this by the values of the box: 0 0 612 792 (U.S. letter)
and 0 0 596 842 (A4).

3

http://partners.adobe.com/asn/developer/pdfs/tn/5002.EPSF_Spec.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5002.EPSF_Spec.pdf
http://netghost.narod.ru/gff/graphics/summary/epsf.htm

Assuming that one does not have access to the software and source files that originally
produced the figure there are several ways to fix bounding boxes.

Manual Editing Postscript files are plain text ASCII. Any decent editor can be used
to adjust the bounding box by hand. Its four parameters are the (x, y) coordinates of the
bottom left and top right corners. To tell where you want to put these points, view the file
in Ghostview (gv) move the pointer to the place you want the corner to be, and read out the
position from gv’s display. Edit the file to change the values, then view it again with gv or
some similar postscript viewer. Ghostview adjusts its window to the bounding box, so you
can quickly tell whether it is correct. Trial and error will give a reasonable bounding box in
one or two tries. If your editing does not seem to change the way the figure is rendered by
gv, make sure you are editing the right bounding box comment. Preferably edit out all but
the first one.

Automatic BoundingBox Adjustment Ghostscript (gs) has a driver bbox whose pur-
pose is to discover the bounding box by drawing the entire graphics file internally and keeping
track of what is drawn. It outputs the information. Not all gs executables have bbox com-
piled in. Execute the command gs -h to list the built in drivers. One can call gs with the
bbox driver and edit the PS file to replace the old BoundingBox comment with the values
output. Alternatively a simple script can do the work for you automatically, here is an
example:

#!/bin/bash

bbget

Get a bounding box and put it on the second line of the file.

if [$# -lt 2] ; then

echo Usage: $0 filein fileout [extrafiles]

echo Put a bounding box on the second line of the file fileout.

else

#Remove previous bounding boxes.

echo Removing the following BoundingBox lines:

sed -n -e "/BoundingBox/!w temp.ps" -e "/BoundingBox/ p" $1

if [$# -gt 2] ; then cat $3 $4 $5 >> temp.ps; fi

if [‘fgrep -c showpage temp.ps‘ != "0"] ; then

echo "File has a showpage. No additions."

showpage=""

else

echo "File has no showpage. I’ll add one temporarily."

showpage=’ -c "showpage"’

fi

#Get the BBox info to bb.out

gs -sDEVICE=bbox -sNOPAUSE -q temp.ps $showpage -c quit 2> bb.out

#Read it in to the second line of the output ps file.

sed -e"1 r bb.out" temp.ps > $2

4

echo "Bounding Box Information:"

cat bb.out

#Clean up.

rm -f bb.out

rm -f temp.ps

fi

This script uses sed the stream editor, as well as gs and a few other standard linux tools.
A point to note is that some PS files do not end with the command showpage, which means
that they won’t print on some printers, but more importantly here that they won’t output
the bounding box for some gs versions. So this script ensures that showpage is called at the
end.

The problem with the automatic approach is that gs can’t always find the bounding box
correctly. For bitmaps it often fails. Also, more often than one might suppose the postscript
file has some sort of hidden drawing points outside the real visible area. Many Mac programs
seem to put spurious invisible points in strange off-canvas places. These cause difficulties
with this approach. Also if the postscript clips off vectors outside a certain area by specifying
a clip-path then ghostview does not seem to observe the clipping when tracing the bounding
box.

2.3 Binary Garbage

The Postscript drivers on Windows and Macs often put binary codes at the start of postscript
files if you just “print-to-file”. That is because they are still acting as if this file is going
to be sent to the particular printer that happens to be selected, and the binary codes are
something that the printer might know, but are not postscript. Any file that does not start
%!PS is not a proper postscript file. Another cause of binary garbage is the header for binary
previews. If the start of your file looks something like ÂDó followed by about a line of
garbage and then %!PS-Adobe-3.0 EPSF-3.0, then you have a binary header file.

Some hints for avoiding these difficulties are for example here, where Tim Love, the au-
thor, says: “Under windows when you’re printing to file, look at the PostScript properties
(or Advanced options), and choose (depending on the driver you have) either ’Archive For-
mat’, ’Encapsulated PS’, ’Optimize for Portability’ or ’Page Independence’. People seem to
have more luck with the free Adobe postscript driver than with the Microsoft one”. Never
‘include preview’ if you are going to import into LaTeX.

If you have postscript files with binary previews, it is possible to clean them up (in some
cases) using the command ps2ps, but this may turn some fonts into line-drawn shapes (see
3.3). Another way is apparently to read the file into GSview (the Windows PS previewer)
and use the ‘extract PS file’ option.

2.4 Line Ends

Postscript is basically an ASCII format. If you transfer a postscript file from Windows or
Mac to Linux or vice-versa using ftp, you ought to use the ASCII rather than BINARY
setting. Then the line ends will be correctly converted between the systems. However, if you

5

http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/latex_maths+pix/node27.html

transfer as binary, or in many cases if you simply copy the file across filesystems, the line
ends will be incorrect for the new operating system. This is particularly a problem if the file
has a binary preview, because then it is not an ASCII file (nor PS, though it may be EPS)
and so it is not correct to transfer it as such. This is one major reason why binary preview
is disastrously unportable.

There are available simple programs on linux to convert from Mac or Windows line ends.
For Mac to linux, the simplest conversion program is a one line script:

tr "\015" "\012" <mac.file >linux.file

However, if you apply such a translation to a file with binary preview it totally breaks it.
Ghostscript itself can mostly cope with line-end problems, but scripts that call it usually

cannot. This can cause confusion about diagnosing the problem. Inspecting the PS file
directly with e.g. less file.eps will usually show the problem immediately.

2.5 Orientation

If a file is saved as if to print in landscape orientation, then it quite likely will import in
such a way that it is rotated by 90 degrees. LaTeX has ways of rotating such files internally,
but this will sometimes have to be done explicitly, which is annoying. If saving or creating a
graphics file for subsequent importation, it is better to use portrait provided the bounding
box is generated correctly.

If you acquire a figure with bad orientation, you can use xfig to fix the orientation as
follows. 1. Open a new xfig file. 2. Place the PS file to be rotated into the xfig file as a
graphic (use the camera button). 3. Use the rotate and scale tools to orient the graphic
upright. 4. Use the edit tool on the graphic and expand or contract it to the original aspect
ratio. 5. Export the xfig file as an eps file. If you started with a decent bounding box the
result should be well bounded too. What is more, the postscript will not have been flattened
or converted, only encapsulated in a relatively benign wrapper that does the rotation and
scaling.

3 Portable Document Format (PDF)

PDF is increasingly popular for producing documents, especially those containing graphics.
Such graphics can be cut out of their files using Adobe’s Acrobat software tools. Therefore
graphics are increasingly coming in this format. Also, this is the format most useful for
importing into pdf[La]TeX, the TeX engine that produces PDF directly rather than DVI
and then PS.

3.1 Converting from PDF to PS

If you have a graphical file in pdf format with a decent MediaBox (PDFspeak for Bounding-
Box) around it, you can convert it directly into PS using a tool called pdf2ps that executes
gs; modern versions of gs support PDF as well as PS. This will quite often work. But it
appears that gs implicitly calculates the bounding box that the graphics have, and it won’t

6

http:

necessarily find one that is the same as the MediaBox that the original PDF file has. This
seems to be a weakness in the way gs works. It would be really helpful if the option existed
to observe the MediaBox of a PDF file.

Another approach is to use acroread, the Adobe viewer and print to file. Unfortunately
this approach will in most cases give a troublesome file. Do not use any of the postscript
options such as shrink or expand to fit pages. In the most recent acroreader, these options
produce perverse postscript that does internal scaling based on what it thinks the current
page size is. This defeats most methods of importing and scaling. If you don’t use the fitting
options, you get managable postscript but an incorrect bounding box. Moreover, the files
(often) are such that the bounding box cannot be automatically fixed; you have to do it by
hand.

3.2 Converting from PS to PDF

Since pdflatex can’t import PS files, only PDF, the need often arises to produce PDF files
from PS. There are (at least) two utilities for this conversion ps2pdf and epstopdf. They
both mostly just call gs with the correct options. Unfortunately, the pdfwriter driver that
ps2pdf uses appears to determine the MediaBox automatically and ignore the specified
bounding box. Therefore if you have a problematic file, whose bounding box can’t be auto-
matically determined, then even if you have painstakingly edited the BoundingBox by hand,
it will likely be to no avail when you produce the PDF file. In this respect epstopdf is better
than ps2pdf, because it pays attention to the bounding box, does some translations to make
its values rational, and sets the media box accordingly. It is also sometimes able to strip off
binary junk at the beginning of the file. Unfortunately it is not fool proof. In particular it
can’t cope with files that have broken line ends (see 2.4). For them ps2pdf may be better.

I have recently (Jan 05) discovered that modern versions of ps2pdf are different. They
seem to put the bounding box by default at the paper size. However, you can add the
switch -dEPSCrop to your ps2pdf command and that makes it produce correct media boxes
by reading the boundingbox. This may enable one to cope with files that epstopdf can’t
manage. Unfortunately xpdf’s use of the media box appears to have some sort of round-off
error that clips off a pixel or two.

Apparently Adobe Distiller can produce PDF files with correct MediaBoxes. It is not
freely available on linux.

3.3 Fonts

Fonts in PDF and PS are often problematic. In general it is important to include the entire
font into the file, unless it is one of the “standard” Adobe fonts that exist on all printers.
If you don’t, you may get a PDF file that can’t be printed on some printers, or viewed on
some operating systems.

If the PDF file is produced from TeX, there are standard ways to produce good looking
PDF, by using Type 1 fonts rather than TeX’s original bitmapped fonts. These files will
work fine.

The problem is fundamentally the use of TrueType fonts. Since these are available mostly

7

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=dvips-pdf
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=dvips-pdf

only on Windows machines, using them will produce PDF files that are of dubious portability.
Acroread will render them, but other conversion tools will often find it difficult. A procedure
(provided by Earl Marmar) for making pdflatex compatible pdf files, starting from illustrator
is as follows:

In Illustrator:

1) Check your fonts: pull down the "type" menu, to "find font...";

uncheck the "truetype" box

2) If any of your fonts disappeared from the second list, then they were

truetype. Replace them with type 1 (one of the ones from the list that

remained after unchecking the "truetype" box)

3) An alternative to replacing the truetype fonts, is to convert them to

type 1 during step 7 below, but this seems to create less pleasant

looking pdf

4) From the file menu, use "save as" to save the file in illustrator pdf

format

5) open the resulting pdf file with acrobat

In acrobat:

6) change the bounding box if you want to remove white space around the

figure: use the crop tool for this (double click the crop icon to get a

widget if you prefer)

7) from the file menu, export to eps without preview, using postscript

level 2; font inclusion: all embedded (although this does not seem to

help if you are using truetype fonts).

The resulting file should work with epstopdf on linux, and the pdf file you get from that
should work with pdflatex on linux.

4 Using pstoedit and xfig

One approach to fixing PS figures that are unsatisfactory is to convert them into an editable
format. The program pstoedit does a remarkably good job on this for PS vector files that
are not too perverse (bitmaps are a different issue). Its forte is converting vector eps into
“fig” format, which is the native format of the linux editing tool xfig. Once the conversion
to fig format is complete, your xfig can open the fig file and edit it as needed. Because
xfig is so good at exporting properly bounded PS (export eps), once you have it in xfig

as vectors, you can be pretty much guaranteed to get a satisfactory PS file. The pstoedit

converter also supports other formats, but many of them are through the use of gs. So if gs
has a problem, the conversion may have the same problem.

Once in xfig you can usually fix the problems with the file. The most frequent are that
there are spurious drawn lines or points outside the proper drawing. This can happen if a

8

http://www.pstoedit.net/
http://www.xfig.org/

larger drawing is unsatisfactorily cropped. Some programs do this by simply masking out
the region. The way to fix it is to delete those extraneous extra points. Sometimes it might
seem as if you have deleted them but xfig still doesn’t output a tight bounding box. This
is almost always because there are hidden points still present. The best test for that in
xfig is to do from the menu: view, zoom to fit canvas. Then you’ll usually see where those
additional points are and can delete them.

The conversion to fig format will sometimes give you horrid courier fonts instead of what
the PS file had. Believe it or not this is a good thing! The conversion was unable to find
fonts on the system, so it substituted those courier fonts instead. Therefore you have got
rid of incompatible fonts. To get back decent-looking fonts, either do the conversion again
with the extra switch setting -df Helvetica, or use the update tool to change the font face
of the entire figure to one of those available in xfig, e.g. Helvetica. Do this by combining
everything you want to change into a grouped object and then applying the update tool with
just the font face checked.

Problems occasionally arise with vector drawn fonts in pstoedit conversion. The lines
that the letters, or sometimes graphical objects, are made of may have their corner styles
changed, resulting in less satisfactory aesthetics.

5 Bitmap Formats

Bitmaps are inescapable for photographs and are also used for color contours and a variety of
color gradients. There is a long list of formats. Fortunately there exist comprehensive sets of
tools for dealing with them, such as the NetPBM utilities2, as well as freely available image
editors such as GIMP. If the graphic consists of nothing but the bitmap, then it is relatively
easy to deal with, and the main question is how to avoid getting a PS file that is enormous.
In fact it may well be the best policy to ask coauthors if they are supplying photographs to
supply the JPEG file itself. Then you can convert it to PS in your own rational way, rather
than receiving a butchered file from someone else’s attempt to convert.

5.1 PNM to PS

The defacto lowest common denominator of bitmaps on linux is the PNM format. If a a file
can be converted into this format, then it is easy to convert this into reasonably compact
PS and PDF. There is a utility pnmtops, which works but gives very bulky files. The way I
usually do it is to use JPEG format inside the PS file, which gives good compression of the
bitmap to reduce the size of the PS file. The following commands will do the job:

cjpeg -qual 100 filebase.pnm >filebase.jpg

jpeg2ps filebase.jpg > filebase.eps

Here cjpeg and jpeg2ps are linux utilities that are present in many distributions or available
off the web. They are converters from PNM to JPEG and JPEG to PS respectively. Choosing
quality = 100 ensures minimal image quality loss, but produces larger files than the default
(75). It depends on your image whether the extra quality is needed.

2Another set of tools is ImageMagick. My experience with NetPBM has been better.

9

5.2 JPEG

It may seem obvious that if you already have a JPEG bitmap, just the second of the com-
mands above is all you need to convert it to PS. Unfortunately, that obvious fact is false.
Some JPEGs are coded as “progressive JPEG”, which is the type that on a slow web link
starts out blurred and chunky and gradually gets sharper as more of the data is received.
This type cannot be included into eps files. Instead you have to convert it to the standard
jpeg first through the step:

djpeg -pnm fileold.jpg | pnmcrop >filenew.pnm

followed by standard treatment of the resulting pnm file.

5.3 GIF

The GIF standard used to be plagued by a patent that UNISYS was granted on the com-
pression method GIF uses. That patent has lapsed now, but it still leaves a sour taste. Still
there are lots of GIFs out there. The utility to convert to PNM is:

giftopnm file.pnm | pnmcrop | pnmmargin 10 >file.pnm

Notice the optional use of pipes through the utility pnmcrop which ensures that uniform
color regions are cropped off the outside, and pnmmargin which puts back a small margin of
10 pixels here.

5.4 PNG

Portable Network Graphics (PNG) is a standard designed to replace GIF. It is supported
by modern browsers. As might be expected, there’s a converter. It is called pngtopnm, and
works just the same as the others.

There are actually a couple of other converters that sound interesting, but I don’t have
experience with. imgtops is available at http://imgtops.sourceforge.net/. “It takes
bitmap images (in almost any common format) and turns them into Encapsulated PostScript
files. It uses PostScript Level 2 and 3 features in order to minimize the size of the output files
without reducing image quality.” It requires Python to be installed. The other, bmeps, is
at http://www.e-technik.fh-schmalkalden.de/personen/dhp/krause (click to Software
(english), bmeps + dvips-add-on). It works on PNG and PNM files (as well as JPEG, but
for JPEGs, jpeg2ps is said to be better). These use loss-less compression.

5.5 Combined Vector and Bitmap Graphics

The harder situation is when a graphical object has both bitmaps and vectors and fonts in
it. The options for dealing with it, if it is somehow broken are either to edit it using the tool
that originally produced it or an alternative sufficiently powerful drawing tool, or to convert
it completely into a bitmap and edit it from there.

If all you need to do is to rotate it, then follow the steps using xfig described under
orientation (2.5). When that is done, the resulting PS file will have a simple bounding box
line such as

10

http://pascalzone.amirmelamed.co.il/Graphics/JPEG/JPEG.htm
http://imgtops.sourceforge.net/
http://www.e-technik.fh-schmalkalden.de/personen/dhp/krause

%%BoundingBox: 0 0 1173 906

near the top (line 6 actually) and a line like:

newpath 0 906 moveto 0 0 lineto 1173 0 lineto 1173 906 lineto closepath clip newpath

about 50 lines down. You can see that the clip path corresponds to the bounding box. Both
can be edited manually to clip and bound the figure appropriately.

6 Scanned Images of Line Drawings

Often one might be interested in including an image scanned from paper. Since a scanned
image can usually be saved as a JPEG, this is straightforward for photos and other gradient
type images. However, it might be that the image is a line drawing, with mostly white areas.
If so, using the JPEG directly would not be the most efficient or satisfactory format for
including it.

One might be tempted to scan a monochrome line drawing using black and white settings
of the scanner, since, after all, it is a two color only image. This is usually a mistake. By
all means use gray-scale if the image has no other colors, but do not use a two-level scale. If
you do, the lines will have ugly edges with little teeth on them where the individual pixels
are either white or black depending on precise illumination. If you are given such a file, it
may be possible to improve its appearance by using a blur tool in an image editing program
such as gimp, but it will not be as satisfactory as the following.

Scan the drawing with enough pixels per inch to resolve easily the details of the image.
Save it as a some convenient format, PNM or even JPEG of high quality is fine. Look at it
and realize that the white background is of course not perfectly white, which is a bad thing,
and that the lines are slightly softened at their edges by shades of gray, which is a good thing
visually. Now we process the figure to make the white really white by telling the image that
anything brighter than some fairly bright level is to be made pure white. That can be done
with graphical user interface tools, or more easily for production by the following.

djpeg -pnm -gray filebase.jpg | pgmnorm -wvalue 220 | pnmcrop \

| pnmmargin -white 10 > filebase.pnm

Here the assumed initial JPEG is converted to PNM and piped through the utility manip-
ulation step pgmnorm -wvalue 220 which tells it that anything brighter than 220 (out of
255) is pure white. When this has been done cjpeg and jpeg2ps will easily convert it into
PS. Actually it would be better to use loss-less compression on the final file, such as is used
in GIF, because that is more efficient for line drawings. Perhaps imgtops or bmeps would
be good solutions for that.

7 LaTeX Desperation Tweaks

In extremis it is possible to import even files that have bad bounding boxes or improper orien-
tation and fix them by optional commands to the figure inclusion command \includegraphics.

11

I consider this a last resort because if you deliberately do clipping or rotation in LaTeX, then
you are locking in an incorrect scaling or perhaps orientation of the figure. If the figure is
subsequently changed, it might even be resubmitted with correct settings for orientation and
bounding box. Then your LaTeX will break it!

What is more, if you want to convert your document to HTML, for example, there is
no way for programs that convert your figures to know that they ought to do the rotation,
scaling, or cropping that you did with LaTeX.

Many details about including PS figures in LaTeX using the graphicx package are given
in the document Using imported graphics in LaTeX2e by Keith Reckdahl which most linux
installations include as file:///usr/share/texmf/doc/latex/graphics/epslatex.ps. It
also gives additional information on some of the questions discussed here.

8 Summaries

8.1 Problem diagnosis

Symptoms Diagnosis

Figure is small object in large whitespace area BoundingBox incorrect 2.2
Figure is correct but too large for its area, overwriting
other stuff

BoundingBox incorrect 2.2

Figure has extraneous additions extending outside its
area

Clipping incorrect

LaTeX complaint about Bounding Box No bounding box in PS 2.2 or
Line ends broken 2.4 or
Binary corruption in PS 2.3

Figure is sideways or upside down incorrect orientation 2.5
Page preview ok but won’t print on some printers Non-standard fonts used 3.3
pdfLaTeX can’t find figure figure.pdf not present 3.2 or

figure.eps specified in LaTeX
Fonts are ugly and jagged Bitmapped fonts used 3.3 or

Graphic is a bitmap
Background has dirty grey shading Scanned image not cleaned 6
PS file is gigantic, renders slowly Graphic is large bitmap 5.1
PDF file has white margin not in PS version ps2pdf inadequate 3.2

8.2 Tools

Tool Purpose Applications and Comments

gs postscript interpreter conversion to new format 1
ps2ps make simpler/cleaner postscript remove binary garbage 2.3
ps2pdf make PDF from PS convert graphics for pdflatex 3.2
epstopdf make PDF with better MediaBox needs correct line ends 3.2

12

ftp://ftp.tex.ac.uk/tex-archive/info/epslatex.pdf

pstoedit [-f fig] make xfig file from PS edit, vector files only 4
pstopnm make PNM from PS image production
jpeg2ps encapsulate JPEG as EPS create compact EPS bitmap 5.1
djpeg [-pnm] translate JPEG [to PNM] remove progressive JPEG 5.2

enable additional processing 5.2
cjpeg make JPEG from PNM prior to jpeg2ps conversion
NetPBM Suite of bitmap tools batch conversion, manipulation
pnmcrop crop PNM remove margins from bitmap 5.3
pnmmargin add margin to PNM add specified margin 5.3
pngtopnm make PNM from PNG conversion of www bitmap 5.4
giftopnm make PNM from GIF conversion of www bitmap 5.3
pnmtops make bulky PS from PNM use jpeg2ps instead
sed stream editor file editing in scripts 1
less, cat examine, type out files linux standard tools 2.4
xfig Line drawing program fixing orientation 2.5

Editing PS file 4
gimp Bitmap drawing program 5
acroread PDF viewer produce PS from PDF 3.1
Illustrator Adobe drawing program not on linux 3.3
Acrobat Adobe PDF manipulation not on linux 3.3

8.3 Instructions to graphics authors

The following might be useful to provide collaborators or others who are supplying you with
graphics, as a way of telling them how to supply graphics in a compatible form.

• Supply Encapsulated Postscript, without preview, in portrait orientation.

• Ensure the margin is minimal, the edges of the media surround the graphic snuggly.

• Don’t use print-to-fit settings.

• Don’t convert vector drawn figures to bitmap.

• Don’t use TrueType fonts; use Type 1 instead. Use standard fonts such as Times,
Helvetica, Courier, etc in styles such as roman, bold, italic etc wherever possible. 3

• Don’t scan monochrome line drawings as black/white (two color); use gray-scale.

• Don’t supply figures that have been through Powerpoint unless unavoidable.4 Please
use the original, prior to being imported into Powerpoint.

• For vector drawn figures, export as PDF and EPS and supply both.

3In addition to the standard faces mentioned, most postscript devices also have access to AvantGarde-
Demi, AvantGarde-Book, Bookman-Demi, Bookman-Light, Helvetica-Narrow, NewCenturySchlbk, and
Palatino fonts in one or more style/weight.

4A description exists of how to get acceptable EPS figures from powerpoint, but it is truly painful.

13

http://www.cag.lcs.mit.edu/~rinard/eps_into_latex/figure.html

• Supply (the original) JPEG for photographs if available.

• Transfer EPS files using ASCII (plain text) ftp settings.

• View your graphic using gv file.eps on linux. If it works and shows the graphic
nearly filling the window, it is probably good. If not, please edit your figure and
supply and test it again.

9 Conclusion

The profusion of complicated graphics tools has led to a confusion of formats and annoying
and time-wasting incompatibities. The worst culprits are the large software vendors. When
they are in monopoly or near-monopoly control of the operating system or graphics format,
they have no immediate financial incentive to output compatible, standards-observing files.
They sometimes deliberately make their output complicated and incompatible with other
tools so as to try to force people to use the monopolist’s own products. The only way to
oppose this deliberate confusion is to insist on openly defined standards and learn how to
produce from your tools files that observe those standards.

If you have corrections to this document, or more or better advice than is contained in
it, I would be interested to hear about them at hutch@psfc.mit.edu. However, please give
references, describe ways, and/or provide files, that would make it possible for me to verify
your claims.

14

	The Problem
	Postscript
	Encapsulated Postscript
	Bounding Boxes
	Binary Garbage
	Line Ends
	Orientation

	Portable Document Format (PDF)
	Converting from PDF to PS
	Converting from PS to PDF
	Fonts

	Using pstoedit and xfig
	Bitmap Formats
	PNM to PS
	JPEG
	GIF
	PNG
	Combined Vector and Bitmap Graphics

	Scanned Images of Line Drawings
	LaTeX Desperation Tweaks
	Summaries
	Problem diagnosis
	Tools
	Instructions to graphics authors

	Conclusion

