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Basic circular orbit

First the simple circular orbit in uniform B .
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Plus constant uniform motion along the field → helical orbit.
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Drifts arising from E and non-uniform B

Additional movement arises when either
there is an electric field E

or else B is not simply uniform.

These are treated by considering the motion to consist of
• Gyration in a circular orbit, plus...
• Drift of the center of the circular orbit.

The drifts can be calculated one at a time and then added together.

Alternatively, they can be derived all together and show that the
particle behaves like a composite entity that has both:
• Charge q, and
• Magnetic moment µ.
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Express the particle motion as sum of two parts
Average over one gyro-orbit is the gyrocenter. Gyrating part is the gyroradius.

Divide position and velocity into average
and gyrating parts: x̄ and x̃ , v̄ and ṽ .
(v̄ = 〈v〉, and 〈ṽ〉 = 0 etc.)
then:

x = x̄ + x̃ and v = ṽ + v̄

v

gyration gyrocenter

Orbit

v

x

x gyroradius

0

particle

The gyrocenter is x̄ , and moves with velocity v̄ . But typical ṽ � v̄ .

If B is nonuniform then its value at the particle also has average and
oscillating parts:

B(x) = B(x̄ + x̃) = B̄ + B̃ = B(x̄) + (x̃ .∇)B + O(x̃2)

And similarly for E = Ē + Ẽ . Note: v̄/ṽ ∼ B̃/B̄ ∼ Ẽ/Ē ∼ ε.

Equation of motion of particle
charge q, mass m is:

d

dt
mv = q(E + v ∧B)
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Substitute parts into the equation of motion

d

dt
m(v̄ + ṽ) = q[E + (v̄ + ṽ) ∧ (B̄ + B̃)] Total

= q[E + ṽ ∧ B̄ + ṽ ∧ B̃ + v̄ ∧ B̄ + v̄ ∧ B̃] (1)

Average equation over gyroperiod (remember 〈 ˜ 〉 = 0):

d

dt
mv̄ = q[Ē + v̄ ∧ B̄ + 〈ṽ ∧ B̃〉] Averaged (2)

Subtract from Total equation (1) to get Fluctuating

d

dt
mṽ︸ ︷︷ ︸
ε0

= q[ Ẽ︸︷︷︸
ε

+ ṽ ∧ B̄︸ ︷︷ ︸
ε0

+ ṽ ∧ B̃︸ ︷︷ ︸
ε

−〈ṽ ∧ B̃〉︸ ︷︷ ︸
ε

+ v̄ ∧ B̃︸ ︷︷ ︸
ε2

] (3)

Solve the zeroth order terms of Fluctuating equation
d
dt
mṽ = q[ṽ ∧ B̄]

To get circular gyro-orbit: ṽ = d
dt
x̃ = x̃ ∧ qB̄/m (obviously).
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Evaluate the doubly-fluctuating term 〈ṽ ∧ B̃〉
The term we want is ṽ ∧ B̃ = ṽ ∧ (x̃ .∇)B.

But (for ∇.B = 0) ∇[(ṽ ∧ x̃).B] = ṽ ∧ (x̃ .∇)B − x̃ ∧ (ṽ .∇)B.

Also, since ṽ and x̃ rotate perpendicular, in circles, at frequency Ω,
Ωx̃(t + π

2|Ω|) = ṽ(t) and ṽ(t + π
2|Ω|) = −Ωx̃(t). Therefore

〈ṽ ∧ (x̃ .∇)B〉 = −〈x̃ ∧ (ṽ .∇)B〉.
Hence

〈ṽ ∧ B̃〉 = 〈ṽ ∧ (x̃ .∇)B〉 = ∇[〈 1
2
(ṽ ∧ x̃)〉.B].

Now the quantity 1
2
〈ṽ ∧ x̃〉 is geometrically the rate of sweeping out

area by the gyro-radius x̃ .
Thus, the magnetic moment of the gyro-orbit is µ ≡ 1

2
q〈ṽ ∧ x̃〉.

So q〈ṽ ∧ B̃〉 = ∇(µ.B), and the Averaged equation becomes

d

dt
mv̄ = q[Ē + v̄ ∧ B̄]+∇(µ.B)

This is the equation of motion of the gyrocenter: the “drift orbit”.
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Additional details of 〈ṽ ∧ B̃〉 evaluation

Vector identity
w [x .(y ∧ z)] = (w .x)(y ∧ z) + (w .y)(z ∧ x) + (w .z)(x ∧ y)

Applied using ∇.B = 0: ∇[B.(ṽ ∧ x̃)] = ṽ ∧ (x̃ .∇)B − x̃ ∧ (ṽ .∇)B
(Gradient applies only to B).
The two terms on RHS are equal when averaged.
So each is equal to half LHS average.
〈ṽ ∧ B̃〉 = 〈ṽ ∧ (x̃ .∇)B〉 = ∇[〈 1

2
(ṽ ∧ x̃)〉.B].

Area πx̃2 times average current round orbit
is magnetic moment, µ = 1

2
mv 2

⊥/B .
That is Area×Charge/time = Area/time×q
Area/time is 1

2
v x̃ = 1

2
〈ṽ ∧ x̃〉

Thus µ = 1
2
〈ṽ ∧ x̃〉q.
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Energy and magnetic moment are conserved
naturally by the equations. They are constants of the motion.

Take v̄ . Averaged to get the Center Energy equation:

v̄ . d
dt
mv̄ = d

dt
( 1

2
mv̄ 2) = qv̄ .Ē + v̄ .∇(µ.B)

and 〈ṽ . Fluctuating 〉 equations to get the: Gyration Energy :

〈 d
dt

( 1
2
mṽ 2)〉 = q[〈ṽ .Ẽ〉+ 〈ṽ .(v̄ ∧ B̃)〉] = q〈ṽ .Ẽ〉 − v̄ .∇(µ.B)

The sum of these equations is
total Conservation of Energy : d

dt
[ 1

2
m(v̄ 2 + 〈ṽ 2〉)] = q[v̄ .Ē + 〈ṽ .Ẽ〉]

Only E does work on the particle. However one can show from
Faraday’s law of induction that q〈ṽ .Ẽ〉 = −µ.∂B̄/∂t = µ∂B/∂t.

Then using µ = 1
2
mṽ 2/B the Gyration Energy equation can be

written d
dt

(µB) = µ[ ∂
∂t

+ v̄ .∇]B = µ d
dt
B ⇒ µ =

mv2
⊥

2B
= const.

Magnetic moment µ is a constant of the motion.
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Various drifts arise from Averaged GC Equation

Use d
dt
mv̄ = q[Ē + v̄ ∧ B̄] + ∇(µ.B). Write v̄ = v‖ + vd .

• Uniform E & B. 0 = q[E + vd ∧ B̄]
E ∧B drift: . . . . . . . . . . . . . . . . . . . . . . . . .vd = vE = (E ∧ B̄)/B2.

• Non-constant E , uniform B . d
dt
mvE = q(vd ∧ B̄)

Polarization drift: . . . . . . . . . . . . . . . vd = vp = − d
dt
mvE ∧ B̄/qB2

• Non-uniform B , E = 0. 0 = qvd ∧B −∇⊥(µB)
Grad-B drift: . . . . . . . . . . . . . . . . . vd = v∇B = −µ(∇B ∧ B̄)/qB2

• Curved B, E = 0. d
dt
mv‖ = v‖(B

B
.∇)B

B
mv‖ = q(vd ∧ B̄)

Curvature drift: . . . . . . . . . . . . . . . . vd = vκ = −mv 2
‖ (κ ∧ B̄)/qB2

• Parallel Mirror Force: . . . . . . . . . . . . . . . . . . . d
dt
mv‖ = qE‖ − µ∇‖B

Total gyrocenter motion is the sum of these drifts.
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Intuitive understanding of drifts.
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E ∧B drift in crossed electric/magnetic fields

Orbit is wider where particle kinetic energy is greater.

E

B

v

vd

Drift velocity vE = E ∧B/B2 same for all particles.

Can also be thought of as a shift to the frame of reference moving
with velocity vE in which E = 0.

Any other force F (e.g. gravity) gives similar drift F ∧B/qB2.

Particle Drifts I H Hutchinson 11



Polarization drift from non-constant E -field

Occurs only when dE/dt 6= 0. A “displacement” more than drift.

Example. A finite E suddenly turned on, initially stationary particle.
B

E

Final average (gyro) locus. Initial Position at rest (when E = 0).

vp = − d
dt
mvE ∧B/qB2 = −m( d

dt
E ∧B) ∧B/qB4 = m d

dt
E⊥/qB

2

Displacement ∆x =
∫
vpdt = m∆E⊥/qB

2
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∇B drift from field-strength gradient

Orbit is tighter where B is bigger. Leads to sideways drift.

v

vd

∇B

B vd

Opposite charges gyrate opposite directions; hence opposite drifts.
Speed depends on v 2

⊥ and hence µ.

Grad-B drift v∇B = −µ(∇B ∧ B̄)/qB2
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Curvature drift from centrifugal force

Definition of curvature
κ ≡ db

dl
= b.∇b where b = B/B .

B1

B2

b̂1

α

Rc
dl

db

b̂2

Radius of curvature Rc = −κ/κ2

Centrifugal force Fcf = mv 2
‖
Rc

R2
c

.

Center of Curvature

Rc

Fcf

ω

κ

v‖

Resulting curvature drift vκ = Fcf ∧B/qB2 = −mv 2
‖ (κ ∧ B̄)/qB2
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Parallel ∇(µB) mirror force from converging field.

Mirror force arises from the component of the magnetic force in the
direction B(x̄) (horizontal here) averaged over a gyro-orbit.

gyroradius

gyrocenter

α
Br

x̃

B

Directed away from stronger-B regions. (µ is antiparallel to B.)
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Magnetic Mirror traps some particles
Particles with sufficient v⊥ are reflected from high-B and bounce.

F‖ F‖

Particle

B0 Br

B-lines

B
Stronger Weaker

Stronger

Reflection
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Trapping is determined by the velocity pitch angle

v⊥

v‖
θc

Loss

Cone

Mirror Trapped

Velocity
space at the
place where
the field is B .

Constancy of µ means 1
2
mv 2

⊥ = µB . Also 1
2
mv 2 = const.

If max field is Bm, particle is trapped only if
µBm = 1

2
mv 2

⊥Bm/B > 1
2
m(v 2

‖ + v 2
⊥). i.e. sin2 θ > sin2 θc = B/Bm.
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