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Preface

These are transcriptions of the notes from which I teach the single semester course “Intro-
duction to Plasma Physics”. Despite the heroic efforts of Valerie Censabella (for which I am
very grateful) to translate my hand-written materials into LaTeX, and extensive editing on
my part, I don’t doubt that there are many typographical errors. Moreover, since they are
only notes, don’t look for limpid prose, and realize that the detailed explanations are in my
mind and orally in class, not all here.

The 2022 version fixes some of the mistakes and typos but not all.

The course is intended only as a first plasma physics course, but includes what I take to be the
critical concepts needed for a foundation for further study. A solid undergraduate background
in classical physics, electromagnetic theory including Maxwell’s equations, and mathematical
familiarity with partial differential equations and complex analysis are prerequisites.

Tan Hutchinson.



Chapter 1

Introduction

1.1 What is a Plasma?

1.1.1 An ionized gas

A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons
and ions are separately free.

When does this ionization occur? When the temperature is hot enough.

Balance between collisional ionization and recombination:

lonization e—
e T s
@
p
PN
fri Recombination
e
—3 &)
®
p —

Figure 1.1: Ionization and Recombination

Ionization has a threshold energy. Recombination has not but is much less probable.

Threshold is ionization energy (13.6eV, H) written y;

Integral over Maxwellian distribution gives rate coefficients (reaction rates). Because of
the tail of the Maxwellian distribution, the ionization rate extends below 7" = y;. And in
equilibrium, when

ions < ojv >
n B o;v (11)

Nneutrals < 0,V >
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Figure 1.2: Ionization and radiative recombination rate coefficients for atomic hydrogen

the percentage of ions is large (~ 100%) if electron temperature: T, % x;/10. e.g. Hydrogen
is ionized for T, % 1eV (11,600°K). At room temperature ionization is negligible.

For dissociation and ionization balance figure see e.g. Delcroix Plasma Physics Wiley (1965)
figure 1A.5, page 25.

1.1.2 Plasmas are Quasi-Neutral

If a gas of electrons and ions (singly charged) has unequal numbers, there will be a net charge
density, p.
p =ne(—e) + ni(+e) = e(n; — ne) (1.2)

This will give rise to an electric field via

P €

VE=—==—(n;,—n.) (1.3)
€0 €0
Example: Slab.
dFE p
- - 1.4
dx €0 (14)



Figure 1.3: Charged slab

Solution : E = p— (1.5)
€o

This results in a force on the charges tending to expel whichever species is in excess. That
is, if n; > n., the E field causes n; to decrease, n. to increase tending to reduce the charge.

This restoring force is enormous!

Example

Consider T, = 1eV, n, = 10m ™3 (a modest plasma; c.f. density of atmosphere nyolecutes ~
3x10%m™3). Suppose there is a small difference in ion and electron densities An = (n; —n.)

so p=Ane (1.6)
Then the force per unit volume at distance x is
F.=pE = pzz) = (An e)? : (1.7)
Take An/n. = 1% ,x = 0.10m.
F, = (10" x 1.6 x 107%) 0.1/8.8 x 107*? = 3 x 10°N.m® (1.8)

Compare with this the pressure force per unit volume ~ p/x with p ~ n.T.(+n;T;)

F,~ 10" x 1.6 x 107"?/0.1 = 16 Nm ™ (1.9)

Electrostatic force > Kinetic Pressure Force.

This is one aspect of the fact that, because of being ionized, plasmas exhibit all sorts of col-
lective behavior, different from neutral gases, mediated by the long distance electromagnetic
forces E, B.

Another example (related) is that of longitudinal waves. In a normal gas, sound waves are
propagated via the intermolecular action of collisions. In a plasma, waves can propagate
when collisions are negligible because of the coulomb interaction of the particles.



1.2 Plasma Shielding

1.2.1 Elementary Derivation of the Boltzmann Distribution

Basic principle of Statistical Mechanics:

Thermal Equilibrium < Most Probable State i.e. State with largest number of possible
arrangements of micro-states.

£ £
S Sy
E E,

Figure 1.4: Statistical Systems in Thermal Contact

Consider two weakly coupled systems S, S with energies Fy, Es. Let g1, go be the number of
microscopic states which give rise to these energies, for each system. Then the total number
of micro-states of the combined system assuming states are independent is

9= 9192 (1.10)

If the total energy of combined system is fixed £y + Ey = E; then this can be written as a
function of Ejy:

g = q(E1)ga(E: — Ey) (1.11)
dg dgy dgo
d — = ——=¢p—0-—1 - 1.12

The most probable state is that for which dd—ﬁ;i’l =0ie.

S 289 @ g = 2 1.1
@wdE g dE O dE T gp (1.13)

Thus, in equilibrium, states in thermal contact have equal values of % Ing.
One defines 0 = In g as the Entropy.
And [/EIng]™! =T the Temperature.

Now suppose that we want to know the relative probability of 2 micro-states of system 1 in
equilibrium. There are, in all, g; of these states, for each specific E; but we want to know
how many states of the combined system correspond to a single microstate of Sy.

Obviously that is just equal to the number of states of system 2. So, denoting the two values
of the energies of S; for the two microstates we are comparing by E4, Eg the ratio of the

10



number of combined system states for S;4 and Sip is
G2( By — EA)
g2(E; — Ep)

Now we suppose that system S5 is large compared with S so that F4 and Ep represent very
small changes in Sy’s energy, and we can Taylor expand the entropy of Sy (i.e. o)

92(Ey — E)
92(Ey — Ea)

Thus we have shown that the ratio of the probability of a system (S;) being in any two
micro-states A, B is simply

=explo(E; — Ex) — o(E; — Ep)] (1.14)

do da] (1.15)

>~ exp l—EAdE + EBd—E

—(EAT— EB)] ’

when in equilibrium with a (large) thermal “reservoir”. This is the well-known “Boltzmann
factor”.

exp l (1.16)

You may notice that Boltzmann’s constant (kp) is absent from this formula. That is because
of using natural thermodynamic units for entropy (dimensionless) and temperature (energy).

Boltzmann’s constant is simply a conversion factor between the natural units of temperature
(energy, e.g. Joules) and (e.g.) degrees Kelvin. Kelvins are based on °C which arbitrarily
choose melting and boiling points of water and divide into 100 intervals. Temperature in
Joules = kpx temperature in Kelvins.

Plasma physics is done almost always using energy units for temperature. Because Joules
are very large, usually electron-volts (eV) are used.

leV = 11600K = 1.6 x 10~ Joules. (1.17)
One consequence of our Botzmann factor is that a gas of moving particles whose energy is
%va adopts the Maxwell-Boltzmann (Maxwellian) distribution of velocities o exp[—”;—g].

1.2.2 Plasma Density in Electrostatic Potential

When there is a varying potential, ¢, the densities of electrons (and ions) is affected by it.

If electrons are in thermal equilibrium, they will adopt a Boltzmann distribution of density

Ne X exp(gib) : (1.18)

This is because each electron, regardless of velocity possesses a potential energy —eg.
Consequence is that (fig[l1.5)) a self-consistent loop of dependencies occurs.

This is one elementary example of the general principle of plasmas requiring a self-consistent
solution of Maxwell’s equations of electrodynamics plus the particle dynamics of the plasma.

11



Electron/lon Electric
Densities ™ Charge Density

Electric
Potential

Figure 1.5: Self-consistent loop of dependencies

1.2.3 Debye Shielding

A slightly different approach to discussing quasi-neutrality leads to the important quantity
called the Debye Length.

Figure 1.6: Shielding of fields from a 1-D grid.

Suppose we put a plane grid into a plasma, held at a certain potential, ¢,.

Then, unlike the vacuum case, the perturbation to the potential falls off rather rapidly into
the plasma. We can show this as follows. The important equations are:

. ' . 2 d*¢ €
Poisson’s Equation Vip=— = —— (n; —ne) (1.19)
dx? €0
Electron Density Ne = Noo exp(ed/Ty). (1.20)

[This is a Boltzmann factor; it assumes that electrons are in thermal equilibrium. n., is
density far from the grid (where we take ¢ = 0).]

Ion Density — n; = ng - (1.21)

This approximation applies far from grid by quasineutrality; we just assume, for the sake of
this illustrative calculation that ion density is not perturbed by ¢-perturbation. That is not
always the case.

12



Substitute: 2 5
ENoo e
@ = ? [exp <T€> — ]_‘| . (122)

This is a nasty nonlinear equation, but far from the grid |e¢/T.| < 1 so we can use a Taylor
expression: exp %ﬁ ~1+ 6T—¢ So

d*p  eny e N

— = 1.2
dx? €0 TegZS EOT€¢ (1.23)

Solutions: ¢ = ¢ exp(—|z|/Ap) where

Ap = (EOTe )é (1.24)

2N

This is called the Debye Length

Perturbations to the charge density and potential in a plasma tend to fall off with charac-
teristic length Ap.

In magnetic fusion plasmas Ap is typically small. [e.g. n. = 10®¥m™3T, = 1keV A\p =
2 x 1075m = 20um.] In space plasmas, which have far lower density, it can be much larger:
hundreds of meters or more.

Usually we include as part of the definition of a plasma that \p < the size of plasma. This
ensures that collective effects, quasi-neutrality etc. are important. Otherwise they probably
aren’t.

1.2.4 Plasma-Solid Boundaries (Elementary)

When a plasma is in contact with a solid, the solid acts as a “sink” draining away the plasma.
Recombination of electrons and ions occur at surface. Then:

1. Plasma is normally charged positively with respect to the solid.

2. There is a relatively thin region called the “sheath”, at the boundary of the plasma,
where the main potential variation occurs.

Reason for potential drop:
Different velocities of electrons and ions.

If there were no potential variation (E= 0) the electrons and ions would hit the surface at

the random rate {
Zm‘; per unit area (1.25)

[This equation comes from elementary gas-kinetic theory. See problems if not familiar.|

13



lid

7

Potential

Figure 1.7: Plasma-Solid interface: Sheath

The mean speed v = \/% ~ \/%

Because of mass difference electrons move ~ /7 faster and hence would drain out of plasma
faster. Hence, plasma charges up enough that an electric field opposes electron escape and
reduces total electric current to zero.

Estimate of potential:

Ton escape flux nv;

1,7~
Electron escape flux  3n,0;
Prime denotes values at solid surface.

Boltzmann factor applied to electrons:
N, = Neo expleds /T (1.26)

where ¢; is solid potential relative to distant (co) plasma.

Since ions are being dragged out by potential assume n; ~ n., (Z; = 1). [This is only
approximately correct.]

Hence total current density out of plasma is

1 1
J = %1”2@“*‘%1 n,Ue (1.27)
_ mTW{@—exp leﬁ] 7} (1.28)
This must be zero so

T. 7 T.1 T; me
. = “Cln|—| =2 e 1.29
¢ e n@e 62n<Temi> ( )

T.1 m

= “lIn(—5 if T, ="1T,. 1.30
() BT =T (1:30)

14



For hydrogen 7+ = 1800 so %ln Te = —3.75.
The potential of the surface relative to plasma is approximately —4 T?

[Note % is just the electron temperature in electron-volts expressed as a voltage. |

1.2.5 Thickness of the sheath

Crude estimates of sheath thickness can be obtained by assuming that ion density is uniform.
Then equation of potential is, as before,

d*¢ o0 ¢
= ez) [exp (;) - 1] (1.31)

We know the rough scale-length of solutions of this equation is

1
T.\2
Ap = < €0 ) the Debye Length. (1.32)

€N

Actually our previous solution was valid only for |e¢/T,| < 1 which is no longer valid.

When —e¢/T, > 1 (as will be the case in the sheath). We can practically ignore the electron
density, in which case the solution will continue only quadratically. One might expect,
therefore, that the sheath thickness is roughly given by an electric potential gradient

T1
L 1.33
o (1.33)

extending sufficient distance to reach ¢g = —4% ie.
distance z ~ 4\p

This is correct for the typical sheath thickness but not at all rigorous.

1.3 The ‘Plasma Parameter’

Notice that in our development of Debye shielding we used n.e as the charge density and
supposed that it could be taken as smooth and continuous. However if the density were so
low that there were less than approximately one electron in the Debye shielding region this
approach would not be valid. Actually we have to address this problem in 3-d by defining
the ‘Plasma Parameter’, Np, as

Np = Number of particles in the ‘Debye Sphere’.

15



4 . T2
= n§7r)\3D (OC 1)
nz

(1.34)

If Np < 1 then the individual particles cannot be treated as a smooth continuum. It will be
seen later that this means that collisions dominate the behaviour: i.e. short range correlation

is just as important as the long range collective effects.

Often, therefore we add a further qualification of plasma:

Np > 1 (Collective effects dominate over collisions)

1.4 Summary

Plasma is an ionized gas in which collective effects dominate over collisions.

Ap <size , Np>1 |

1.5 Occurrence of Plasmas

Gas Discharges:  Fluorescent Lights, Spark gaps, arcs, welding, lighting
Controlled Fusion

[onosphere: Ionized belt surrounding earth

Interplanetary Medium:  Magnetospheres of planets and starts. Solar Wind.

Stellar Astrophysics:  Stars. Pulsars. Radiation-processes.

Ion Propulsion: Advanced space drives, etc.
& Space Technology Interaction of Spacecraft with environment
Gas Lasers: Plasma discharge pumped lasers: CO,, He, Ne, HCN.

Materials Processing:  Surface treatment for hardening. Crystal Growing.
Semiconductor Processing: Ion beam doping, plasma etching & sputtering.

Solid State Plasmas: Behavior of semiconductors.

(1.35)

(1.36)

For a figure locating different types of plasma in the plane of density versus temperature see
for example Goldston and Rutherford Introduction to Plasma Physics IOP Publishing, 1995,

figure 1.3 page 9. Another is at http://www.plasmas.org/basics.htm

1.6 Different Descriptions of Plasma

1. Single Particle Approach. (Incomplete in itself). Eq. of Motion.

16
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2. Kinetic Theory. Boltzmann Equation.

B o o], of
& +V(%(+aa‘/] f = at)(:ol‘ (137)

3. Fluid Description. Moments, Velocity, Pressure, Currents, etc.

Uses of these.

Single Particle Solutions — Orbits

— Kinetic Theory Solutions — Transport Coefs.

— Fluid Theory — Macroscopic Description
All descriptions should be consistent. Sometimes they are different ways of looking at the
same thing.

1.6.1 Equations of Plasma Physics

VE = 2 VB = 0
€o

OB ., 1OE (1.38)
VAE = ot VAB = MOJ"‘EE

F=qE+vAB)

1.6.2 Self Consistency

In solving plasma problems one usually has a ‘circular’ system:

The problem is solved only when we have a model in which all parts are self consistent. We
need a ‘bootstrap’ procedure.

Generally we have to do it in stages:

e Calculate Plasma Response (to given E,B)
e Get currents & charge densities

e Calculate E & B for j, p.

Then put it all together. This will become clearer by example as we develop the subject.

17



Chapter 2

Motion of Charged Particles in Fields

Plasmas are complicated because motions of electrons and ions are determined by the electric
and magnetic fields but also change the fields by the currents they carry.

For now we shall ignore the second part of the problem and assume that Fields are Prescribed.
Even so, calculating the motion of a charged particle can be quite hard.
Equation of motion:
dv
m— = ¢ (E + v. AN B
_at charge E-field velocity B-field
Rate of change of momentum

(2.1)

Lorentz Force
Have to solve this differential equation, to get position r and velocity (v=1) given E(r, t), B(r, ).

Approach here: Start simple, gradually generalize. For a more sophisticated demonstration
that the simple results are comprehensive see http://silas.psfc.mit.edu/introplasma/
drifts.pdfl

2.1 Uniform B field, E = 0.

mv =qvAB (2.2)

2.1.1 Qualitatively

in the plane perpendicular to B: Accel. is perp to v so particle moves in a circle whose
radius ry, is such as to satisfy

2
mrpQ? = m% =|qlv.B (2.3)
L

) is the angular (velocity) frequency

18
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Figure 2.1: Circular orbit in uniform magnetic field.

1st equality shows Q2 = v2 /12 (rp = v, /Q)

Hence second gives mv ) = |qlv, B

B
ie. Q = lalB (2.4)
m
Particle moves in a circular orbit with
_ ldlB ; .
angular frequency €)= —— the “Cyclotron Frequency (2.5)
m
and radius 1 = % the “Larmor Radius. (2.6)

2.1.2 By Vector Algebra

e Particle Energy is constant. proof: take v. Eq. of motion then

Cod1
mv.v = - <2mv ) =qv.(vAB)=0. (2.7)

e Parallel and Perpendicular motions separate. v = constant because accel (o< v A B)
is perpendicular to B.

Perpendicular Dynamics:

Take B in Z direction and write components

mi, = qu,B , mi, = —qu,B (2.8)
Hence 9
B B
Uy = q—{)y = — <q> vy = —Q%0, (2.9)
m m

Solution: v, = v, cosQt  (choose zero of time)
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Substitute back:

m . lq| .
Uy = —Up = ——v sin 2.10
Yy qB q L ( )
Integrate:
v . q v
r=x9+ ——sinQt ., y = yo+ —-—= cosQt (2.11)
Q lq| ©2
q positive (ion)
y Neﬂ-handw
)—x Anticlockwise
Z
q negative (e)
“B 8 \ Right-handed
Clockwise

Figure 2.2: Gyro center (xg,yo) and orbit projection viewed from positive z.
This is the equation of a circle with center ry = (xo,3o) and radius r;, = v, /2: Gyro Radius.
[Angle is 6 = Qt]
Direction of rotation is as indicated in Fig. for opposite sign of charge:
Ions rotate anticlockwise. Electrons clockwise about the magnetic field.

The current carried by the plasma always is in such a direction as to reduce the magnetic

field.
This is the property of a magnetic material which is “Diamagnetic”.

When v is non-zero the total motion is along a helix.

2.2 Uniform B and non-zero E

mv =q(E+v AB) (2.12)
Parallel motion: Before, when E = 0 this was v = const. Now it is clearly
. _ 4B
= 2.13
U” m ( )

Constant acceleration along the field.

Perpendicular Motion

Qualitatively: Speed of positive particle is greater at top than bottom so radius of cur-
vature is greater. See Fig.[2.3] Result is that guiding center moves perpendicular to both E
and B. It ‘drifts’ across the field.
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(00007 )

@

Figure 2.3: E A B drift orbit

Algebraically: It is clear that if we can find a constant velocity v that satisfies
E + vy AB =0
then the sum of this drift velocity plus the velocity

d .
vy et [rLezQ(t—to)]

T dt
which we calculated for the E = 0 gyration will satisfy the equation of motion.

Take AB the above equation:
0=EAB+ (v;iAB)AB=EAB+ (vq.B)B — B%v,

so that
EAB
Vg = B2
does satisty it.
Hence the full solution is
v= v + V4 + v

parallel cross-field drift Gyration

where
. qE)
o=
and

vy (eq[2.17) is the “E x B drift” of the gyrocenter.

Comments on E x B drift:

1. It is independent of the properties of the drifting particle (q, m, v, whatever).

2. Hence it is in the same direction for electrons and ions.

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

3. Underlying physics for this is that in the frame moving at the E x B drift E = 0. We

have ‘transformed away’ the electric field.

4. Formula given above is exact except for the fact that relativistic effects have been

ignored. They would be important if vy ~ c.
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2.2.1 Drift due to Gravity or other Forces

Suppose particle is subject to some other force, such as gravity. Write it F so that
1
mv=F+q¢vAB=q(-F+vAB) (2.20)
q

This is just like the Electric field case except with F/q replacing E.

The drift is therefore
1FAB
Vg = —

=B

In this case, if force on electrons and ions is same, they drift in opposite directions.

(2.21)

This general formula can be used to get the drift velocity in some other cases of interest (see
later).

2.3 Non-Uniform B Field

If B-lines are straight but the magnitude of B varies in space we get orbits that look quali-
tatively similar to the E L B case:

VE

Vd

@ W

Figure 2.4: VB drift orbit

Curvature of orbit is greater where B is greater causing loop to be small on that side. Result
is a drift perpendicular to both B and VB. Notice, though, that electrons and ions go in
opposite directions (unlike E A B).

Algebra

We try to find a decomposition of the velocity as before into v = v; 4+ vy where v, is
constant.

We shall find that this can be done only approximately. Also we must have a simple expres-
sion for B. This we get by assuming that the Larmor radius is much smaller than the scale
length of B variation i.e.,

r, < B/|VB (2.22)
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in which case we can express the field approximately as the first two terms in a Taylor
expansion:

B~B;+ (r.V)B (2.23)
Then substituting the decomposed velocity we get:
d
md%ff = mvy,=q(VAB)=¢q[vi ABog+vsABg+ (vp +vg) A (r.V)B] (2.24)
or 0 = viABg+v,A(xr.V)B+v,A(r.V)B (2.25)

Now we shall find that vg/vy, is also small, like 7|V B|/B. Therefore the last term here is
second order but the first two are first order. So we drop the last term.

Now the awkward part is that v, and ry are periodic. Substitute r = r. + r; where r, is
the center of the orbit (gyrocenter), the nonperiodic part; then

0=vgABy+vLA(r,.V)B+v,A(r..V)B (2.26)
We now average over a cyclotron period. The last term is oc e ¥ so0 it averages to zero:
0= Vg A B+ <VL N (I‘LV)B> . (227)
To perform the average use
r, = (rp,yL) = v (sin Qt, L cos Qt) (2.28)
Q I
vy = (T1,y1) = vp <COS Qt, “Tin Qt) (2.29)
I
d
So [vpA(r.V)B], = vyyd—yB (2.30)
d
Vi A (r.V)B], = —vﬁyd—yB, (2.31)
taking VB to be in the y-direction.
Then
02
(v,y) = —(cosQtsin Qt>ﬁL =0 (2.32)
2 2
q vi _lvig
vey) = —(cosQtcos)— = -—— 2.33
(vay) |q|< s 2014 (2.33)
So L2
qg 1v]
V)B)=—-— ——=VB 2.34
(v A (r.V)B) |q|2QV (2.34)
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Substitute in:
0—vinB- LUgp (2.35)
R g 202 '

and solve as before to get

_'U2
(Iqtll25 VB>/\B _qviBAVB

_ -t L= T 2.36
v B2 a2 B2 (2.36)
or equivalently L B AYE
mvi B A
== —_— 2.37
Vi= 2B  B? (2.37)

This is called the ‘Grad B drift’.

2.4 Curvature Drift

When the B-field lines are curved and the particle has a velocity v, along the field, another
drift occurs.

Center of Curvature
Figure 2.5: Curvature and Centrifugal Force

Take | B| constant; radius of curvature R..
To 1st order the particle just spirals along the field.

In the frame of the guiding center a force appears because the plasma is rotating about the
center of curvature.

This centrifugal force is Fi¢

il

F.p= me pointing outward (2.38)
as a vector
o Re
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[There is also a coriolis force 2m(w A v) but this averages to zero over a gyroperiod.]

Use the previous formula for a force

1F;AB  muiR.AB
Vg= — =
g B qB*  RZ

This is the “Curvature Drift”.

(2.40)

It is often convenient to have this expressed in terms of the field gradients. So we relate R,

to VB ete. as follows:

¥32 db

R. Bﬁbl
di\\ B,
33

Figure 2.6: Differential expression of curvature

(Carets denote unit vectors)

From the diagram

and

So

But (by definition)

So the curvature drift can be written

mviR, B muiBA(b.V)b
Vi=—— N — =

q R B2 q B?

2.4.1 Vacuum Fields

Relation between VB & R, drifts

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

The curvature and VB are related because of Maxwell’s equations, their relation depends

on the current density j. A particular case of interest is j = 0: vacuum fields.

VAB=0 (static case)
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B\Tég

(= R) | 8,

Figure 2.7: Local polar coordinates in a vacuum field

Consider the z-component

10
0=(VAB), = ;E(TBg) (B, = 0 by choice). (2.47)
0By By
_ 20 2.48
or + r ( )
or, in other words,
B
VB), = —— 2.49
(V). =~ (2.49
[Note also 0 = (VAB)y = 9By/0z : (VB), =0
and hence (VB)perp = —B R./R2.
Thus the grad B drift can be written:
2 2
mvi BAVB  mv] ReAB
— = 2.50
VBT T, T Be 2 R2B? (2.50)
and the total drift across a vacuum field becomes
1 , 1 S\R.AB
VR + Vvp = a <m’U =+ 2va_> W . (251)

Notice the following:

1. R, & VB drifts are in the same direction.
2. They are in opposite directions for opposite charges.
3. They are proportional to particle energies

4. Curvature <> Parallel Energy (x 2)
VB < Perpendicular Energy

5. As a result one can very quickly calculate the average drift over a thermal distribution
of particles because

1 T

Gmvl) = 5 (2.52)
1

<§mvi> =T 2 degrees of freedom (2.53)
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Therefore

(2.54)

oTR.AB [ 2rBA(b.V)b
(VR + vyp) = =— 0

¢ RB2 |\ ¢ B?

2.5 Interlude: Toroidal Confinement of Single Parti-
cles
Since particles can move freely along a magnetic field even if not across it, we cannot ob-

viously confine the particles in a straight magnetic field. Obvious idea: bend the field lines
into circles so that they have no ends.

Figure 2.8: Toroidal field geometry

Problem
Curvature & VB drifts

1/ , 1 ,\RAB
Vg = 5 <m’U + QmUL) W (255)
1/ , 1 ,\ 1
_ 1 1 - 2.56
ol = - (ol gme? ) 2 (2.56)

Figure 2.9: Charge separation due to vertical drift

are even worse because charge separation occurs -+ E — E'A B — Outward Motion.
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2.5.1 How to solve this problem?

Consider a beam of electrons v # 0 v, = 0. Drift is

myj 1 (2.57)
Vg = p BTR .
What B, is required to cancel this?
Adding B, gives a compensating vertical velocity
B,
V=5 for B, < Br (2.58)
Br
We want total )
B, mvuj 1
,=0=vy=—=+ ——=—= 2.59
v g, T BoR (2.59)
So B. = —mu)/Rq is the right amount of field.
Note that this is such as to make
[mu|
ro(B,) = =R . 2.60
) = 4, (200

But B, required depends on v and ¢ so we can’t compensate for all particles simultaneously.

Vertical field alone cannot do it.

2.5.2 The Solution: Rotational Transform

Toroidal Coordinate system (r, 6, ¢) (minor radius, poloidal angle, toroidal angle), see figure

2.8

Suppose we have a poloidal field By

Field Lines become helical and wind around the torus: figure [2.10]

In the poloidal cross-section the field describes a circle as it goes round in ¢.

Equation of motion of a particle ezactly following the field is:

dg By By B By

¢
o _ _ _ 2.61
@&~ B, B, B" ~ B (2.61)
and
r = constant. (2.62)

Now add on to this motion the cross field drift in the Z direction.
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8.0

4.0 —

do B
ro = fevu + vgcosd (2.63)
d
d—z = ygsind (2.64)
Take ratio, to eliminate time:
1@ B Vg Sin 6 (2.65)

rdo %v” + vg cos b

Take By, B, v||,vq to be constants, then we can integrate this orbit equation:

B
Inr] = [~ In |~ 4 yycosd]] . (2.66)
Take r = ro when cosf = 0 (¢ = 7) then
B
r=ry/ [1 + Zd cos 9] (2.67)
oY
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If 5;—1;;1” < 1 this is approximately
r =19 — Acost (2.68)

Buv
here A = =%
where Byv, 10

This is approximately a circular orbit shifted by a distance A:

Figure 2.12: Shifted, approximately circular orbit

Substitute for vy

A= rop . B.R (2.69)
1 muf + 3mot o 2.70)
qu ) R
If ULZO A:ZE LRO— Lg%, (271)

where 774 is the Larmor Radius in a field By x r/R.

Provided A is small, particles will be confined. Obviously the important thing is the poloidal
rotation of the field lines: Rotational Transform.

Rotational Transform

loidal 1
rotational transform = Po 0,1 a ange': (2.72)
1 toroidal rotation

poloidal angle

(transform/2m =) ¢ (2.73)

toroidal angle

(Originally, ¢ was used to denote the transform. Since about 1990 it has been used to denote
the transform divided by 27 which is the inverse of the safety factor.)

‘Safety Factor’

1 toroidal angle

qs = —

— > 2.74
t  poloidal angle ( )
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Actually the value of these ratios may vary as one moves around the magnetic field. Definition

strictly requires one should take the limit of a large no. of rotations.

s is a topological number: number of rotations the long way per rotation the short way.

Cylindrical approx.:

TB¢
ds = 5o
RBy
In terms of safety factor the orbit shift can be written
r Byr
Al=rp ==r =Trrqs
| ! Lo R Lo BoR Lq

(assuming By > By).

(2.75)

(2.76)

2.6 The Mirror Effect of Parallel Field Gradients: E =

0, VB || B

L B

Figure 2.13: Basis of parallel mirror force

In the above situation there is a net force along B.

Force is
<Fy> = —|gvAB| sina= —|qv.Bsina
. _Br
sinae =

B
Calculate B, as function of B, from V.B = 0.

10 0

B=-—(rB,)+=—B,=0.
v ror (rBr) + 0z 0

Hence 9B

B, = — “d

[rB,] r P r

Suppose rp, is small enough that % ~ const.

0B, 1 ,0B,
=——r
0z 2 Loz

[rB,|oF ~ — /TL rdr
0
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So

1 0B,
B, = __ 2.82
(re) = =5, (2.82)
Br L 1 8BZ
no=—-——=+—— 2.83
T T B T 2B o, (2.83)
Hence 5 L2
VITL Bz 5Mmuy Bz
< Fj>=— = -2 : 2.84
I i 2 0z B 0z ( )
As particle enters increasing field region it experiences a net parallel retarding force.
Define Magnetic Moment
1
= imvi/B : (2.85)
Note this is consistent with loop current definition
— A = 2'|Q|UJ_ _ lq|rrvy 9 86
a "L 27ry, 2 ( )
Force is Fj = n.V B
This is force on a ‘magnetic dipole’ of moment .
FH = [J,.VHB (287)

Our p always points along B but in opposite direction.

2.6.1 Force on an Elementary Magnetic Moment Circuit

1dxB,(y+dy) lldez (y+dy)

y
ldyB(x) |  dA=dxdy I/dyBx(x+dx)

X dy A
z IdyB,(x) | L IdyB,(x+dx)

Figure 2.14: Force components on an elementary circuit constituting a magnetic dipole.

Consider a plane rectangular circuit carrying current I having elementary area dzdy = dA.
Regard this as a vector pointing in the z direction dA. The force on this circuit in a field
B(r) is F such that

0B,

F, = Idy[B.(x +dz) — B,(z)] = Idydz e

(2.88)
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0B,

F, = —Idx[B.(y+dy) — B.(y)] = Idydx o (2.89)
F, = —Idz[B,(y+ dy) — B,(y)] — Idy[B.(z + dz) — B,(z)] (2.90)
B 0B, 0B,| 0B,
= —Idxdy l pe + Gy] = Idydzx P (2.91)

(Using V.B = 0).
Hence, summarizing: F = I[dydxV B,. Now define p = IdA = Idydxz and take it constant.
Then clearly the force can be written

F=V(B.p) [Strictly = (VB).u] (2.92)

p is the (vector) magnetic moment of the circuit.

The shape of the circuit does not matter since any circuit can be considered to be composed
of the sum of many rectangular circuits. So in general

p=IdA (2.93)

and force is
F=V(B.n) (p constant), (2.94)

We shall show in a moment that |p| is constant for a circulating particle, regarded as an
elementary circuit. Also, u for a particle always points in the -B direction. [Note that this
means that the effect of particles on the field is to decrease it.] Hence the force may be
written

F=-uVB (2.95)
This gives us both:

e Magnetic Mirror Force:
Fy=-pVB (2.96)

and

e Grad B Drift:

(2.97)

2.6.2 4 is a constant of the motion

‘Adiabatic Invariant’
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Proof from F

Parallel equation of motion

| R 2 2.
Tar ~ VT T (2.98)
50 doy d 1 dB  dB
Y| 2
i =, = —p— 2.99
Mg = gD = TR = iy (2.99)
o d 1 dB
_ — 2 —
Conservation of Total KE
d, 1 1
%(imvﬁ + §mfvi) =0 (2.101)
d 1
= a(imvﬁ +uB) =0 (2.102)
Combine g B
—(uB) — p— =20 2.103
5 (WB) —p— (2.103)
= Ocll’? =0 As required (2.104)
Angular Momentum
of particle about the guiding center is
mu | 2m smv? (2.105)
rpmu; = mv, = —- :
e g B7 " o] B
2m

Conservation of magnetic moment is basically conservation of angular momentum about the
guiding center.

Proof direct from Angular Momentum

Consider angular momentum about G.C. Because 6 is ignorable (locally) Canonical angular
momentum is conserved.

p=[rA(mv+qA). conserved. (2.107)

Here A is the vector potential such that B =V A A
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the definition of the vector potential means that

Hence

B, =

r

1 9(rAy))

or

, 2
:>7’LA9(7’L) = /OLT’.Bsz:%BZ_ Hm

p = |q(|‘]7“LvLm+q

So p = const <> u = constant.

|
q

— =ML
lq|

~ |ql

m

q|

(2.108)

(2.109)

(2.110)

(2.111)

Conservation of p is basically conservation of angular momentum of particle about G.C.

2.6.3 Mirror Trapping

LA

i

Reflection
=== Darticle| ===

-

D

————= B-lines

_— ]

\,

R

I—

[

)/"/-/._//"’__/_’—EF

N/ Stronger

Stronger Wealker By B,

Figure 2.15: Magnetic Mirror

Fj may be enough to reflect particles back. But may not!
Let’s calculate whether it will:

Suppose reflection occurs.

At reflection point vy, = 0.

Energy conservation

1
2 2
m(viy + vjo) 5y
[t conservation
1,02 1,02
5MUTy  3mu,
BO Br
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Hence

B,
vl +vjy = gvio (2.114)
0
B 2
2= i (2.115)
Pitch Angle 6
tanf = & (2.116)
Y
By vig .2
— = ———— =sin“6 2.117
B, v3, + vf, 0 ( )
So, given a pitch angle 6, reflection takes place where By/B, = sin? ;.
If 6, is too small no reflection can occur.
Critical angle 6. is obviously )
0. =sin"'(By/B;)? (2.118)

Loss Cone is all 8 < 6.
on

Mirror| Trapped

Figure 2.16: Critical angle 6. divides velocity space into a loss-cone and a region of mirror-
trapping

Importance of Mirror Ratio: R,, = B;/By.

2.6.4 Other Features of Mirror Motions

Flux enclosed by gyro orbit is constant.

(2.119)




1,2
2mm 5mu]

= 2.120
— (2120)
2mm

= —— /= constant. (2.121)

q

Note that if B changes ‘suddenly’ 1 might not be conserved.
Figure 2.17: Flux tube described by orbit
Basic requirement

r, < B/|VB] (2.122)

Slow variation of B (relative to 7).

2.7 Time Varying B Field (E inductive)

Figure 2.18: Particle orbits round B so as to perform a line integral of the Electric field

Particle can gain energy from the inductive E field

0B
E = — 2.12
VA o (2.123)
. )
or ?{E.dl — — [Bds= —Cfﬁ (2.124)
Hence work done on particle in 1 revolution is

: dd o,

ow = — j{ || E.dl = +|q| /B.ds = +|Q|E = |q|B7mry (2.125)
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(d¢ and v g are in opposition directions).

1 g 21 Bm tmuv?
- — 4g|Brr? = 2 2.12
§(gmt) = b= T (2.126)
2B
= = 2.12
Hence d /1 Q] /1 dB
d (1 s :5( 2): ab 2128
dt (2”““) or O\ 2" ) Ty (2.128)
but also i1 J
—(=mv? ) = — (uB) . 2.12
i (gmd) = g o (2.129)
Hence d
o
2. 2.1
=0 (2.130)

Notice that since ® = 2;’2’” (L, this is just another way of saying that the flux through the gyro
orbit is conserved.

Notice also energy increase. Method of ‘heating’. Adiabatic Compression.

2.8 Time Varying E-field (E, B uniform)

Recall the E A B drift:
EAB

VEAB — 32 (2131)
when F varies so does vgag. Thus the guiding centre experiences an acceleration
: d (EANB
VEAB = at <32 ) (2.132)
In the frame of the guiding centre which is accelerating, a force is felt.
d (EANB
F, = —m ( Iz ) (Pushed back into seat! — ve.) (2.133)
This force produces another drift
1F, \NB m d (EANB
— = - - B 2.134
bT TB qB2dt< B ) (2.134)
m d PN
-~ Fa ((Eb)b-E) (2.135)
m .
= —E 2.136
B ( )
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This is called the ‘polarization drift’.

EAB m o -
Vp =Vgeap + V= Iz +qBQ E, (2137)
ENB 1 .
— E 2.138
B T ap ™t (2.138)

Initial Position at rest (when E = 0). Final average (gyro) locus.

Figure 2.19: Suddenly turning on an electric field causes a shift of the gyrocenter in the
direction of force. This is the polarization drift.

Start-up effect: When we ‘switch on’ an electric field the average position (gyro center) of
an initially stationary particle shifts over by ~ % the orbit size. The polarization drift is this
polarization effect on the medium.

Total shift due to v, is

m ~ m
Ar= [yt = / Bt = 2 [ABL] (2.139)

2.8.1 Direct Derivation of % effect: ‘Polarization Drift’

Consider an oscillatory field E = Ee~“! (L ryB)

d
mdit’ — ¢(E+VvAB) (2.140)
= q(Be ™ +vAB) (2.141)
Try for a solution in the form
v =vpe “ v, (2.142)
where, as usual, vy, satisfies mvy, = gv;, A B
Then
(1)  m(—iwvp) =q(E+vp AB) X et (2.143)
Solve for vp :  Take AB this equation:
(2)  —miw(vpAB)=gq(EAB+(Bvp)B - B’vp) (2.144)
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add miw x (1) to g x (2) to eliminate vp A B.

m*w?vp + ¢*(EAB — B*vp) = miwgE (2.145)
m2w? miw EAB
w? wq EAB
i.e. 1l——=|=- E 2.147
e Vp [ QQ] QB|q| + B2 ( )

Since —iw <> % this is the same formula as we had before: the sum of polarization and
E A B drifts except for the [1 — w?/Q?] term.

This term comes from the change in vp with time (accel).

Thus our earlier expression was only approximate. A good approx if w < €.

2.9 Non Uniform E (Finite Larmor Radius)

dv

mo=4q (E(r) + v AB) (2.148)
Seek the usual solution v =vp + vr.
Then average out over a gyro orbit
d’UD
<mﬁ> = 0 ={(q(E(r)+vAB)) (2.149)
= q[(E(r)) + vp A B] (2.150)
Hence drift is obviously
(E(r)) NB

So we just need to find the average E field experienced.
Expand E as a Taylor series about the G.C.
x? 82 yz 82

E(r)=Ey+ (r.V)E + <2!ax2 + 05,

> E + cross terms + . (2.152)

(E.g. cross terms are xy%éyE).
Average over a gyro orbit: r = rp(cos#,sin,0).
Average of cross terms = 0.
Then )
(E(r)) =E+ ((r).V)E + <2L,>V2E. (2.153)
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linear term (rz) = 0. So

2
(E(r)) ~E + %VQE

Hence E A B with 1st finite-Larmor-radius correction is

EAB
B?

oo
Veag = |1+ ZV

[Note: Grad B drift is a finite Larmor effect already.]

Second and Third Adiabatic Invariants

There are additional approximately conserved quantities like p in some geometries.

2.10 Summary

Vg

\ 23
VE
vvB
VR

VRr + Vvp

Mirror Motion

Force is F = —uVDB.

of Drifts

EAB
= Iz Electric Field

1FAB
= - 5 General Force

q B

2 EAB
— (1 + ZLV2> 2 Nonuniform E
2

mvi BAVDEB
= 2q T GradB
= m—vﬁ R. A B Curvature
- q R2B?

1 1 R.AB )
= p (mv2 + 2mvi> W Vacuum Fields.

q EL ..
= — Polarization

lq| 12| B

2
= ML 1s constant
H="n
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Chapter 3

Collisions in Plasmas

3.1 Binary collisions between charged particles

Reduced-mass for binary collisions:

Two particles interacting with each other have forces
F5 force on 1 from 2.

Fo; force on 2 from 1.

By Newton’s 3rd law, F15 = —F9;.

Equations of motion:

mlf‘l = F12 ; mgfg = Fgl (31)
Combine to get
. 1 1
Iy — Iy = Fio ( + ) (3.2)
ma mo

which may be written
mi1mso d2

my + Mo ﬁ

If Fi> depends only on the difference vector r; — ry, then this equation is identical to the

(r1 —r2) = Fp2 (3.3)

equation of a particle of “Reduced Mass” m, = nﬁﬁi moving at position r = r; — ry with
respect to a fixed center of force:
m,¥ = Fa(r) . (3.4)

This is the equation we analyse, but actually particle 2 does move. And we need to recognize
that when interpreting mathematics.

If F5; and ry — ry are always parallel, then a general form of the trajectory can be written
as an integral. To save time we specialize immediately to the Coulomb force

_ 4092 T (3.5)

dmeq 13

F12
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1: projectile ‘
U1

\
[

- T
b Impact Parameter @ 0
77777777777777777777777777777 2: target
Figure 3.1: Geometry of the collision orbit

Solution of this standard (Newton’s) problem:
Angular momentum is conserved:

m,r20 = const. = m,bu;

(0 clockwise from symmetry)
Substitute u = % then 6 = bor — 2 by
Also

(3.6)

d 1 1 du du
" dt u w? do Y0 (37)
T = —bU1 W 0 = —(bvl) Uu W
Then radial acceleration is

1.e.

. 2
i —1r0* = —(bvy)? u? (u

d*u 1

L 0142
do?

This orbit equation has the elementary solution

~dmeg my, (bvy)?

(3.9)

(3.10)
1

w=- = Ccosf — 1L

T

3.11

dmeg m, (bvy)? (3:11)

The sin @ term is absent by symmetry. The other constant of integration, C, must be deter-
mined by initial condition. At initial (far distant) angle, 6;, u; = = = 0. So

1
0=Ccosb; — 9192
There:

Ameo m, (bvy)?

(3.12)
du )
7= —U1 —bvl@\l = +bv,;C'sin 0,

(3.13)
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Hence

sin 0y -1/Cb b
tanf; = = = —— 3.14
an v COSel %m/c bgo ( )
where .
4192
bog = . 3.15
%0 dmen mypvy ( )

Notice that tanf; = —1 when b = bgy. This is when #; = —45° and x = 90°. So particle
emerges at 90° to initial direction when

b = by “90° impact parameter” (3.16)

Finally:

WA
<1 + 90> (3.17)

C = —gcosecel =3 2

3.1.1 Frames of Reference

Key quantity we want is the scattering angle but we need to be careful about reference
frames.

Most “natural” frame of ref is “Center-of-Mass” frame, in which C of M is stationary. C of

M has position:
Ty + Mol

R (3.18)
mi + msy
and velocity (in lab frame)
V = M (3‘19)
my + Mo
Now
= R+ 2 (3.20)
my + Mg
r, = R— %y (3.21)
my + Mma

So motion of either particle in C of M frame is a factor times difference vector, r.
Velocity in lab frame is obtained by adding V to the C of M velocity, e.g. -2 1V

m1+m2

Angles of position vectors and velocity differences are same in all frames.

Angles (i.e. directions) of velocities are not same.

3.1.2 Scattering Angle

In C of M frame is just the final angle of r.
20, +x=m (3.22)
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2
-0, X
—6,

—0)

Figure 3.2: Relation between #; and Y.

(01 is negative)

X=m+201 ; 91:Xg7T
X 7 X
tanf; = tan (= — — ) = —cot =
an 6, an<2 2) co 5
So
X b
ts = —
co 5 boo
tanK = bﬂ
2 b

(3.23)

(3.24)

(3.25)

(3.26)

But scattering angle (defined as exit velocity angle relative to initial velocity) in lab frame

is different.
Final velocity in CM frame
mgy

! . .
Vv = v COS Sin = — V71 (COS Sin
CM 1CM ( Xes Xc) 1 ( Xes Xc)
mi + mo

[ Xc = x and vy is initial relative velocity]. Final velocity in Lab frame

M2V mavy .
vi=vey+V = (V+ ————— COS Xe; smxc)
mi + mo mi + Mo
So angle is given by
mav
V+ 1 tms COS Xe V. mq + my
cot xr = T = — ——— cosecy, + cot x.
—25-qin Y, U1 Mo
mi+mg

For the specific case when my is initially a stationary target in lab frame, then

miv

V = —— and hence
mi + Mo
my
cotxr = m—cosecxC + cot x.
2

This is ezact.
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Center-of-Mass Frame

Particle 1

313
<

Laboratory Frame,

Stationary Target
Particle 1 Sy
””” Vi — ib

Figure 3.3: Collisions viewed in Center of Mass and Laboratory frame.

Small angle approximation (cot y — i), cosecy — i gives

1 my 1 1 m
XL ma Xc Xe mq + Mo

So small angles are proportional, with ratio set by the mass-ratio of particles.

3.2 Differential Cross-Section for Scattering by Angle

Rutherford Cross-Section

By definition the cross-section, o, for any specified collision process when a particle is passing
through a density ny of targets is such that the number of such collisions per unit path length
is nyo.

Sometimes a continuum of types of collision is considered, e.g. we consider collisions at
different angles () to be distinct. In that case we usually discuss differential cross-sections
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(e.g 97) defined such that number of collisions in an (angle) element dx per unit path length
dx
is ngg—;dx. [Note that Z—; is just notation for a number. Some authors just write o(x), but I

find that less clear.]

Normally, for scattering-angle discrimination we discuss the differential cross-section per unit

solid angle:
do

ddy

(3.33)

This is related to scattering angle integrated over all azimuthal directions of scattering by:

dx
7 sin Y

To
A

Ay

Figure 3.4: Scattering angle and solid angle relationship.

dQg = 2msin xdx (3.34)
So that since p p
o o
—dQy = —d 3.35
. N (3.35)
we have p . p
’ 7 (3.36)

dS2 B 2w sin @

Now, since x is a function (only) of the impact parameter, b, we just have to determine the
number of collisions per unit length at impact parameter b.

Think of the projectile as dragging along an annulus of radius b and thickness db for an
elementary distance along its path, d¢. It thereby drags through a volume:

d2mbdb . (3.37)
Therefore in this distance it has encountered a total number of targets

de2mwbdb . ny (3.38)
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Figure 3.5: Annular volume corresponding to db.

at impact parameter b(db). By definition this is equal to df‘é—‘;dbng. Hence the differential
cross-section for scattering (encounter) at impact parameter b is

- =2mb . (3.39)

Again by definition, since y is a function of b

do do do do|db

—dx=—db=> — = —|—| . 3.40
dx X" db dx  db |dx (3.40)
[db/dyx is negative but differential cross-sections are positive.|
Substitute and we get
d 1 do | db b |db
- 2 - 1 |=Z (3.41)
dQ2s  2msiny db |dy sin y |dx
[This is a general result for classical collisions.]
For Coulomb collisions, in C of M frame,
X b
t{ =) =-— 3.42
“ (2) boo (3.42)
db d b
= x = by chot;( = —%COSGCZ% . (3.43)
Hence
do bgo cot % bgo 2 X
= — — = 3.44
S siny 2 R (3.44)
_ ey 1 4
2 2singcos$ sin” 3
b5
= 4
4sin* & (3:46)

48



This is the Rutherford Cross-Section.
do b5
dQ,  4sin® 5

(3.47)

for scattering by Coulomb forces through an angle xy measured in C of M frame.
Notice that d%’s — 00 as Y — 0.

This is because of the long-range nature of the Coulomb force. Distant collisions tend to
dominate. (x = 0< b — 00).

3.3 Relaxation Processes

There are 2 (main) different types of collisional relaxation process we need to discuss for a
test particle moving through a background of scatterers:

1. Energy Loss (or equilibrium)

2. Momentum Loss (or angular scattering)
The distinction may be illustrated by a large angle (90°) scatter from a heavy (stationary)

target.

If the target is fixed, no energy is transferred to it. So the energy loss is zero (or small if
scatterer is just ‘heavy’). However, the momentum in the x direction is completely ‘lost’ in
this 90° scatter.

This shows that the timescales for Energy loss and momentum loss may be very different.

3.3.1 Energy Loss

For an initially stationary target, the final velocity in lab frame of the projectile is

/ myv; Mmavy moUr . >
= ¢, T c 3.48
VL <m1+m2+m1+m2COSX m1+mzsmx ( )
So the final kinetic energy is
1 1 my \? 2mymy
K' = -—mp}f = _-mp} () + ———— cos X 3.49
2 E T2 Ny +my (my +my)” X (3.49)
2
my 2 .2
——=—— (cos” x. + sin” x. } (3.50)
(m1 -+ m2)2 ( )
1 2 2m1m2
= —-mvjsl+ ———"= (cosy.—1 3.51
gt {1+ 2 sy - )| 351)
1 2 .
= gt - 2 o2 Xe (3.52)
2 (m1 + mg) 2



Hence the kinetic energy lost is AK = K — K’

1 o 4Amimg 9 Xe

= —mv; —————— sin” =— 3.93
9 1Y1 (ml + m2)2 9 ( )
1 2 4m1m2 1 . Xe b

= —myv using cot — = — 3.54
2 1Y% (ml —I— m2)2 (%)2 + 1 [ 2 b90] ( )

(exact). For small angles x < 1 i.e. b/byy > 1 this energy lost in a single collision is

approximately
1 4 boo \ >
(mw%) Lm22 <90> (3.55)
2 (m1 + mg) b

If what we are asking is: how fast does the projectile lose energy? Then we need add up the
effects of all collisions in an elemental length d¢ at all relevant impact parameters.

The contribution from impact parameter range db at b will equal the number of targets
encountered times AK:

1 4 boo \ >
nad2rbdb  —myvi—— 2 (290 (3.56)
—_—— 2 (mq + moy) b

encounters

Loss per encounter (Ak)

This must be integrated over all b to get total energy loss.

2
4
dK = nydlK —"2 / (1’9()) 2mbdb (3.57)
(my 4+ mo) b
SO IK
mims 2 max
— = K ng—————— 8mbg, |In|b|| : 3.58
dé N2 (ml + m2)2 ™ 90 [n| Hmln ( )

We see there is a problem both limits of the integral (b — 0, b — 00) diverge logarithmically.
That is because the formulas we are integrating are approximate.

1. We are using small-angle approx for AK.

2. We are assuming the Coulomb force applies but this is a plasma so there is screening.

3.3.2 Cut-offs Estimates

1. Small-angle approx breaks down around b = bgg. Just truncate the integral there; ignore
contributions from b < bgy. Actually this apparently arbitrary approximation is rigorously
justified by an integration of the exact (not small angle) loss expression.

2
/(b/bbglfﬂ = baoIn[(b/bgo)* +1] —b* =0 asb— 0.
90

20



So if we had not made the small-angle approximation (which is here not mathematically
essential) we would not have had a small-b divergence, we would have got zero from the
lower limit.

2. Large-b cut-off arises because the Coulomb potential does not apply to arbitrarily large
distances. Debye Shielding says really the potential varies as

eXp -_T 1
¢ ox M instead of oc — (3.59)
r r

so approximate this by cutting off integral at b = A\p equivalent to So the cut-offs can be
taken as by, = bgg and by.x = Ap.

dK VAN UD) 2
— = Kny—— 8mby, In|A 3.60
dr 2 (ml + m2)2 T0gg | | ( )

AD eols 2 4192
A = 2P - .61
bgo < ne? ) / (47reomrv% (3.61)
So Coulomb Logarithm is ‘In A’
AD €l 3 q192
A p— —_— pu— —_—= . 2
bgo ( ne2 ) / <47T60mTU% (3.62)

Because these cut-offs are in In term result is not sensitive to their exact values.

One commonly uses Collision Frequency. Energy Loss Collision Frequency is

1 dK 1Mo 2
Vg =V — — = oty —— = 81b5, In|A 3.63
K =V e Ll Al (3.63)

Substitute for byy and m, (in bgg)

2
mim
Vg = MNoUq ( 12 3 [4 q:rgfnz 2] InA (364)
my + mo) €0y +ms U1
2 2
8
— g, D% T A (3.65)

(4meg)® mamavy
Collision time Tk = 1/vk

Effective (Energy Loss) Cross-section [%% = O'an}

e 8

(4me)® mamaut

InA. (3.66)

Ok = Vi [novy =

o1



3.3.3 Momentum Loss

Loss of x-momentum in 1 collision is

Ap, = my(vy —0v},) (3.67)
= miu {1 - (mlrj—lmg + mln—fmz cos Xc)} (3.68)
= m”imQ (1 —cos x.) (3.69)
2 2
~ P mlTj—ng % = Da mlemZ 2;))290 (3.70)

(small angle approx). Hence rate of momentum loss can be obtained using an integral
identical to the energy loss but with the above parameters:

dp bmac My 203,
— = ———— —= 27bdb 3.71
dl nap /bmm my +mo b2 m ( )
Mo 2
= —— 47w b5, InA 3.72
n2pm1+m2 T Ogg 11 ( )
Note for future reference:
dp dp o MMM 2
e ———= 47b;, InA. 3.73
at v T " om0 (373)
Therefore Momentum Loss.
Collision Frequency
1dp msa
vy, = Ul}?@ = NoV1 m 471'630 InA (374)
2
= ngvy — 2 4g N2 | A (3.75)
mi + ma 4dmeq nﬁﬂ:‘é Vi
2,2
4
gy D AT(mtma) ) (3.76)
(4mep) MaMmivy
Collision Time 7, =1/v,
Cross-Section (effective) o = U,/Naty
Notice ratio
Energy Loss vk 2 my+mg  2my (3.77)
Momentum loss v,  mymag mem?  my +mo '
This is
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Third case, e.g. electrons — ions shows that mostly the angle of velocity scatters. Therefore
Momentum ‘Scattering’ time is often called ‘90° scattering’ time to ‘diffuse’ through 90° in
angle.

3.3.4 ‘Random Walk’ in angle

When m; < meg, energy loss < momentum loss. Hence |v/| ~ v;. All that matters is the
scattering angle: x ~ x. =~ 2bgg/b.

Mean angle of total deviation A« in length L is zero because all directions are equally likely.
But:
Mean square angle is

—_— bmax
Aa? = nyl / 2 27bdb (3.81)
bmin
= Lny 87 by, In A (3.82)

Spread is ‘all round’ when Aa? ~ 1. This is roughly when a particle has scattered 90° on
average. It requires

Lng 87b3, InA =1 . (3.83)

So can think of a kind of ‘cross-section’ ‘cgq’ for 90° scattering as such that
nyL‘ogy’ = 1 when Lny 87 by, InA = 1 (3.84)
ie. ‘og0) = mhp8InA (= 20,) (3.85)

This is 8In A larger than cross-section for 90° scattering in single collision.

Be Careful! ‘ogy’ is not a usual type of cross-section because the whole process is really
diffusive in angle.

Actually all collision processes due to coulomb force are best treated (in a Mathematical
way) as a diffusion in velocity space

— Fokker-Planck equation.

3.3.5 Summary of different types of collision

The FEnergy Loss collision frequency is to do with slowing down to rest and exchanging
energy. It is required for calculating
Equilibration Times (of Temperatures)
Energy Transfer between species.
The Momentum Loss frequency is to do with loss of directed velocity. It is required for
calculating
Mobility: Conductivity/Resistivity
Viscosity
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Particle Diffusion
Energy (Thermal) Diffusion

Usually we distinguish between electrons and ions because of their very different mass:

Energy Loss

4

[Stationary Targets]

Momentum Loss

8
Kyee - (46 )2 m27:j3 In A Plee = KVee X TneZ’r—ir_zmz - 1:|
T€o ee e
Z%et 8T me + m; m;
Ky = ny InA Py, = By, x i ~
(4meg)® memv? 2m. oM,
Z2e! 8 mi; — My
fri = 5 55 A Pvii = Ry 3 [+ N ] (3.86)
(dme,)” Miv; 2m;
Zge! 8 me+m; 1
(4meg)® mimev; om; 9

Sometimes one distinguishes between ‘transverse diffusion’ of velocity and ‘momentum loss’.

The ratio of these two is

Api [ |Ap

ldp

dXL
—_al 3.87
p2A€/‘pA€ /‘p e ( )
s Xe 2
_ ( 1;2)() 2 (3.88)
s M
So
¢ ) 2
‘090, _ =1 like particles (3.89)
Op my + Mo
~ 2 mp < Mo 390)
2
my
Hence
LVe@ - pl/ee = Kyee (: ‘Vee7!!) (392)
‘v = 2Py, = Kyee&Z2 (= ZVee) (= Vi) (3.93)
l1/7;7; = pl/ii = KVZ‘Z‘ (Z l/“”) (lee IOHS) (394)
2
e = e Plie = Te e = Vi = vy (3.95)
m; my;

[But note: ions are slowed down by electrons long before being angle scattered.]
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3.4 Thermal Distribution Collisions

So far we have calculated collision frequencies with stationary targets and single-velocity
projectiles but generally we shall care about thermal (Maxwellian) distributions (or nearly
thermal) of both species. This is harder to calculate and we shall resort to some heuristic
calculations.

34.1 e—1

Very rare for thermal ion velocity to be ~ electron. So ignore ion motion.
Average over electron distribution.

Momentum loss to ions from (assumed) drifting Maxwellian electron distribution:

fe(v) = ne (;:T) exp l—m(V;TVd)T (3.96)

Each electron in this distribution is losing momentum to the ions at a rate given by the
collision frequency
o ngg Am (me + mz)
P (4re)? mym2o?

In A (3.97)

so total rate of loss of momentum is given by (per unit volume)

d
—d—lt) = /fe(v) v,(v) mev dv (3.98)
To evaluate this integral approximately we adopt the following simplifications.

1. Ignore variations of In A with v and just replace a typical thermal value in A =

)\D/bgg(l}l).

2. Suppose that drift velocity v, is small relative to the typical thermal velocity, written

ve = \/Te/m. and express f, in terms of u = - to first order in ug = ¥4
e

€

1 -1
e R EX (399
Me —u?

taking x-axis along u, and denoting by f, the unshifted Maxwellian.

Then momentum loss rate per unit volume

dpy
—C];t = /feypmevxd?’v
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3
= VP(UG)me /(1 + u:tud)fo % Vg d3 \4 (3101)

u? 5
= l/p(ve)mevd/u—g fod’ v

To evaluate this integral, use the spherical symmetry of f, to see that:

u? u? +u + u? 1 u?
/ Loy = 3 / o'y = / o'y

2T ne 2

= — 3 2 g T Ne . (3102)

1d 2
P oy =S () (3.103)
p dt 3(2m)2

(where p = m.vgn. is the momentum per unit volume attributable to drift).

2 27 4 e 7
. ™ (m j;”) In A, (3.104)
3 (271')E (471—60) m;mevg

2 Ze2\? 4
= Cn (29) ST A, (3.105)
3(2n)2 4reg m2Tz2

Ve =

(substituting for thermal electron velocity, v., and dropping ¢ order term), where Ze = g;.

This is the standard form of electron collision frequency.

342 1—e

Ion momentum loss to electrons can be treated by a simple Galilean transformation of the
e — 1 case because it is still the electron thermal motions that matter.

is same in both cases:

dp

Rate of momentum transfer, %2 e

- = 3.106
i 24 ( )
Hence |pe|vei = |pi|vie or
Vie = @vei = el 5, (3.107)
|pi| n;my;
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Figure 3.6: Ton-electron collisions are equivalent to electron-ion collisions in a moving refer-
ence frame.

(since drift velocities are the same).

Ion momentum loss to electrons has much lower collision frequency than e — i because ions
possess so much more momentum for the same velocity.

3.4.3 11—

Ion-ion collisions can be treated somewhat like e — 7 collisions except that we have to
account, for moving targets i.e. their thermal motion.

Consider two different ion species moving relative to each other with drift velocity vg; the
targets’ thermal motion affects the momentum transfer cross-section.

Using our previous expression for momentum transfer, we can write the average rate of
transfer per unit volume as: [see “note for future reference”]

_nume 2 3, 73
vdm by, In A d’vid’v 3.108
// M1 + ma T by I A f1 fod’vid vy ( )

where v, is the relative velocity (vi — vy) and by is expressed

mima
mi+mso’

Since everything in the integral apart from f;f, depends only on the relative velocity, we
proceed by transforming the velocity coordinates from v, vy to being expressed in terms of
relative (v,) and average (i.e. individual center of mass velocity, V)

and m, is the reduced mass

mivy + MoV

V, = V] — Vy : A% (3.110)

m1+m2
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Take f; and f5 to be shifted Maxwellians in the overall C of M frame:

fi=n, ( "y )gexp l—wl (j=1,2) (3.111)

27T 2T

where mvg, + movge = 0. Then

3 3 2 2
mq 2 mo 2 mqv mav
Jifa = ning () <> exp [— - - 2]

2nT 2nT 2T 2T
Vi.m1vVq1 V2.9V 42
1 3.112
X { + T T } ( )
to first order in v,4. Convert to local CM v-coordinates and find (after algebra)

i = (M)g(mT>§ MV?  mu0?

= mieAorr) \err) CP|T2r T ar
X {1 n n;vd.vr} (3.113)

where M = mj+ms. Note also that (it can be shown) that the Jacobian of the transformation
is unity d*v,d3vy = d®v,d*V. Hence

dp M \% [/ m \}
= //Vrmrvrélﬂ bgolnA ning <M> (27TT>

MV? U2 r
exp <— 2; ) exp (—%ﬁ") {1 + ﬂ;Vd.vr} v, >V (3.114)

and since nothing except the exponential depends on V| that integral can be done:

d T % Iy 2 r
_cTIt) - /vr m,vAmhs, In A nyng (;:T) exp < 7;;%) {1 4 n;vd.vr} d*v,  (3.115)

This integral is of just the same type as for e — i collisions, i.e.

d 2
_dit? = VgUm, 4T bao(vrs) In A, nlng/%fo(vr)dB’vr
2
= vgUm4 T bog(vy) In Ay nyng - (3.116)
3(2m)?

where v,; = ,/m%, b2, (v,;) is the ninety degree impact parameter evaluated at velocity vy,

and on is the normalized Maxwellian.

d 2 2 4
dp _ <‘J1QQ> " n A, nyns mvg (3.117)

Cdt 3(27?)% dmeg) m2vd

rYre
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This is the general result for momentum exchange rate between two Maxwellians drifting at
small relative velocity vy.

To get a collision frequency is a matter of deciding which species is stationary and so what the
momentum density of the moving species is. Suppose we regard 2 as targets then momentum
density is nymyvg so

(3.118)

Vig =

1 dp 2 nz(q1q2>2 47 In A,
1
)5

nimivg dt 32 dmey) MU My

i

This expression works immediately for electron-ion collisions substituting m, ~ m., recov-
ering previous.

. m? 1 T 2T

- 3 = . . —_ el

For equal-mass ions m, = s = 2 and v,; = Ve = Vi
Substituting, we get

1 2 4

1 1l 3
3me 4reg miz Tf

that is, % times the e — i expression but with ion parameters substituted. [Note, however,
that we have considered the ion species to be different.]

344 e—e

Electron-electron collisions are covered by the same formalism, so
1 2\? 4
Voo = —1 M <e> T InA . (3.120)
T2 4meg m2T2

However, the physical case under discussion is not so obvious; since electrons are indistigu-
ishable how do we define two different “drifting maxwellian” electron populations? A more
specific discussion would be needed to make this rigorous.

Generally vee ~ v;/ V2 : electron-electron collision frequency ~ electron-ion (for momentum
loss).

3.4.5 Summary of Thermal Collision Frequencies

For momentum loss:

2 Ze2\? 4

vy = Y2 n( c ) T InA, . (3.121)
3\/% 47T€0 me2T62

1 L5 (elect ters) (3.122)

Vee =~ —= Ug - electron parameters .
V2 P

Vie = g, (3.123)
n;m;
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2 aa N2 4 , 3
b = V2 (qqu,) ”3( M )QmAZ- (3.124)
2

27, 1
3ﬁ 47T€0 mET m; + my,
11

Energy loss Xv related to the above (Pv) by

2
Ky— " p, (3.125)
my + Mo

Transverse ‘diffusion’ of momentum v, related to the above by:

v= P

v (3.126)

my + Mo
3.5 Applications of Collision Analysis

3.5.1 Energetic (‘Runaway’) Electrons

Consider an energetic (%mev% > T') electron travelling through a plasma. It is slowed down
(loses momentum) by collisions with electrons and ions (Z), with collision frequency:

4
8
Plee = Vee :ne% % In A (3.127)
(4meg)” mgvy
pyy = Mgz, o2, (3.128)
el Zne ee 2 ee .
Hence (in the absence of other forces)
d
ﬁ(mev) = — (Plee + Pre) mpv (3.129)
A
= - (1 + 2) Vee M (3.130)

This is equivalent to saying that the electron experiences an effective ‘Frictional’ force

d Z
Fy = %(mev) = — (1 + 2) Vee MV (3.131)
A et 8m InA
F, = — (1 + ) e 3.132
f 9 n (47?60)2 mev2 ( )

Notice

1. for Z =1 slowing down is % on electrons % ions

2. Fy decreases with v increasing.
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Suppose now there is an electric field, E. The electron experiences an accelerating Force.

Total force

Z 4 In A
)ne : ¢ 8rhn (3.133)

d
F=S(m)=—eE+F =—eE—(1+2
dt(mv) ek + Fy e < + 5 dmeg)? mer?

Two Cases (When E is accelerating)

1. |eE| < |F¥|: Electron Slows Down

2. |eE| > |Fy|: Electron Speeds Up!

Once the electron energy exceeds a certain value its velocity increases continuously and the
friction force becomes less and less effective. The electron is then said to have become a
‘runaway’.

Condition:

(3.134)

Z ) et rln A
Ne
2 (

Lo 9
—Me > 1 —
et ( 3 Amey)®  2eE

3.5.2 Plasma Resistivity (DC)

Consider a bulk distribution of electrons in an electric field. They tend to be accelerated by
E and decelerated by collisions.

In this case, considering the electrons as a whole, no loss of total electron momentum by
e — e collisions. Hence the friction force we need is just that due to 7,;.

If the electrons have a mean drift velocity vy(< vipe) then

d
E(mevd) = —eF — Uymeug (3.135)
Hence in steady state
—eF
Vg = — (3.136)
Melei
The current density is then
2
ek
J = —neevg = < (3.137)
Melei

Now generally, for a conducting medium we define the conductivity, o, or resistivity, i, by

1
j=cE ; nj=EFE <a = > (3.138)
n
Therefore, for a plasma,
1 e2
o= = (3.139)
77 meyez



Substitute the value of 7,; and we get

1
e ’mée InA
o~ n oem 8T In ; (3.140)

Ne  (4rmey)” 3v2m T2
1
Ze*mé 8m InA
= ¢ 77"; T 5 (for a single ion species). (3.141)
(4meg)” 3+ 2m T&

Notice

1. Density cancels out because more electrons means (a) more carriers but (b) more
collisions.

2. Main dependence is 7 o< T7%/2. High electron temperature implies low resistivity (high
conductivity).

3. This expression is only approximate because the current tends to be carried by the
more energetic electrons, which have smaller v,;; thus if we had done a proper average
over f(v.) we expect a lower numerical value. Detailed calculations give

In A
n=52x10"—— Om (3.142)

(T./eV)

N

for Z = 1 (vs. our expression ~ 107%). This is ‘Spitzer’ resistivity. The detailed
calculation value is roughly a factor of two smaller than our calculation, which is not
a negligible correction!

3.5.3 Diffusion

For motion parallel to a magnetic field if we take a typical electron, with velocity v ~ vy it
will travel a distance approximately

le = Vge [V (3.143)
before being pitch-angle scattered enough to have its velocity randomised. [This is an order-

of-magnitude calculation so we ignore v,..] ¢ is the mean free path.

Roughly speaking, any electron does a random walk along the field with step size ¢ and step
frequency 7,;. Thus the diffusion coefficient of this process is

2 5/2
Doy~ (2 7y ~ 2 (3.144)
Ve n
Similarly for ions
2 75/2
Dy ~ 2y~ 2 (3.145)
Vii n
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Notice )
— Me \ 2 (%7 .
i ei =2 | — ~ — f Te ~ T; 3146
mfra = () = 2Ty (3.140
Hence b, ~V;
Mean free paths for electrons and ions are ~ same.

The diffusion coefficients are in the ratio

Di e 3 . . . .
D= (m) . Tons diffuse slower in parallel direction. (3.147)
e my

Diffusion Perpendicular to Mag. Field is different

rr rr ©

Figure 3.7: Cross-field diffusion by collisions causing a jump in the gyrocenter (GC) position.

Roughly speaking, if electron direction is changed by ~ 90° the Guiding Centre moves by a
distance ~ r;. We may think of this as a random walk with step size ~ r; and frequency

7.;. Hence

U2

D, ~ Tieﬁei ~ #ﬁei (3148)
€
Ion transport is similar but both require a discussion of the effects of like and unlike collisions.

Particle transport occurs only via unlike collisions. To show this we consider in more detail
the change in guiding center position at a collision. Recall mv = gv A B which leads to

v, = grL NB (perp. velocity only). (3.149)
m
This gives
BAmv,

At a collision the particle position does not change (instantaneously) but the guiding center
position (rg) does.

rg+r, =ro+r, = Arg=ry—ro=—(r;, —rp) (3.151)
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Change in rj, is due to the momentum change caused by the collision:
v, —rp=——Am(V, —v))=— AA(mv)) (3.152)

So
Arg=—— ANA(mvy). (3.153)

The total momentum conservation means that A(mv, ) for the two particles colliding is
equal and opposite. Hence, from our equation, for like particles, Arg is equal and opposite.
The mean position of guiding centers of two colliding like particles (ro; + rg2)/2 does not
change.

No net cross field particle (guiding center) shift.

Unlike collisions (between particles of different charge ¢) do produce net transport of particles
of either type. And indeed may move rg; and rgps in same direction if they have opposite
charge.

Vi
~ 2 ~ tz,
D; 7. PU, : Py, (3154)
Notice that r%i/rie ~mi/Me 5 PUie[Tei o pr

So D;; /Dy ~ 1 (for equal temperatures). Collisional diffusion rates of particles are same
for ions and electrons.

However energy transport is different because it can occur by like-like collisions.

Thermal Diffusivity:

Xe ~ Tie(Tei+Vee) ~ 77 Vei (Vi ™ Vee) (3.155)
Xi 7“1232' (PUic + Vi) ~ T%i Ui (Ui > Use) (3.156)

Xi/Xe ~ TQLZ ? ~ T ml = <m>2 (equal T) (3.157)
r Me

Le Vei Me m§
i

Collisional Thermal transport by Ions is greater than by electrons [factor ~ (m;/m.)? |.

3.5.4 Energy Equilibration

If T, # T, then there is an exchange of energy between electrons and ions tending to make
T. =T;. As we saw earlier

2 e e
K = = PUei = Me Lue; (3.158)
m; m;
So applying this to averages.
2me
Vei =2 o Ve (~ Tie) (3.159)

i
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Thermal energy exchange occurs ~ m./m; slower than momentum exchange. (Allows T, #

T;). So

dT, dT; —
= —— =Ky, (T.-T, 3.160
il i Vei ( ) (3.160)
From this one can obtain the heat exchange rate (per unit volume), H,;, say:
d /3 d (3
Hey = ——|\snde) =— (smTi 3.161
dt (2" ) dt (2” ) (3.161)
3 d 3 —
= _*7Te_iri:7 Kei Te_ﬂ 162
S0 (1) = SR (1 - ) (3.162)
Important point:
—  2m, 2m, - 1 o\ Z
Ky = et = 2o Ky o — (m> N (3.163)
m; ™m; Z2 \m;

‘Electrons and Ions equilibrate among themselves much faster than with each other’.

3.6 Some Orders of Magnitude

1. In A is very slowly varying. Typically has value ~ 12 to 16 for laboratory plasmas.
2. Ty~ 6 x 107U (ny/m?) / (T,/eV)?  (InA =157 =1).
e.g. =2 x 10°s7! (when n = 10**m =3 and T, = 1keV.) For phenomena which happen
much faster than this, i.e. 7 < 1/v; ~ bus, collisions can be ignored.

Examples: Electromagnetic Waves with high frequency.

3. Resistivity. Because most of the energy of a current carrying plasma is in the B field
not the K.E. of electrons, resistive decay of current can be much slower than 7,;. E.g.
Coaxial Plasma: (Unit length)

Inductance L = p, lng
Resistance R =17 1/7a?
L/R decay time

poma® . b nee? 5 b
TR ~ In— ~ ———pu, ma”In —
77 a Mele;
2 2 2 2
neet a® 1 wia 1 1
~ - — = = d > — . (3164)
Me€g Cz Ve C2 Ve Ve

Comparison 1 keV temperature plasma has ~ same (conductivity/) resistivity as a slab
of copper (~ 2 x 1078Qm).
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Ohmic Heating Because n oc 77%/2, if we try to heat a plasma Ohmically, i.e. by simply
passing a current through it, this works well at low temperatures but its effectiveness falls
off rapidly at high temperature.

Result for most Fusion schemes it looks as if Ohmic heating does not quite yet get us to the
required ignition temperature. We need auxilliary heating, e.g. Neutral Beams. (These slow
down by collisions.)
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Chapter 4

Fluid Description of Plasma

The single particle approach gets to be horribly complicated, as we have seen.

Basically we need a more statistical approach because we can’t follow each particle separately.
If the details of the distribution function in velocity space are important we have to stay
with the Boltzmann equation. It is a kind of particle conservation equation.

4.1 Particle Conservation (In 3-d Space)

o

Ay

Ax

Figure 4.1: Elementary volume for particle conservation

Number of particles in box AxAyAz is the volume, AV = AzAyAz, times the density n.
Rate of change of number is is equal to the number flowing across the boundary per unit
time, the flux. (In absence of sources.)

—Q[AxAyAz n] = Flow Out across boundary. (4.1)

ot

Take particle velocity to be v(r) [no random velocity, only flow] and origin at the center of
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the box refer to flux density as nv =T .

Flow Out = [I',(0,0,Az/2) —T,(0,0,—Az/2)] AzAy + = + y . (4.2)
Expand as Taylor series
0
So,
0
flow out ~ a(nvz)AzAmAy + x +y (4.4)
= AV V.(nv).
Hence Particle Conservation 5
5" = V.(nv) (4.5)
Notice we have essential proved an elementary form of Gauss’s theorem
/ VAdr = [ AdS. (4.6)
v ov

The expression: ‘Fluid Description’ refers to any simplified plasma treatment which does
not keep track of v-dependence of f detail.

1. Fluid Descriptions are essentially 3-d (r).
2. Deal with quantities averaged over velocity space (e.g. density, mean velocity, ...).
3. Omit some important physical processes (but describe others).

4. Provide tractable approaches to many problems.

Fluid Equations can be derived mathematically by taking moment&ﬂ of the Boltzmann Equa-
tion.

0" moment [ d*v (4.7)
Ist moment [ vd*v 4.8
2nd moment [ vvdv 4.9

These lead, respectively, to (0) Particle (1) Momentum (2) Energy conservation equations.

We shall adopt a more direct ‘physical’ approach.

IThey are therefore sometimes called ‘Moment Equations.’
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4.2 Fluid Motion

The motion of a fluid is described by a vector velocity fie