| HEAD | PREVIOUS |
| ∫0xnf(x)dx=yn−y0= |
n−1 ∑ k=0 | f(xk+1/2)(xk+1−xk) |
| ∆y = (1/6F(0)+1/3F( |
∆
| ) +1/3F( |
∆
| )+1/6F(∆))∆ |
|
∆
|
|
∂f
|
| f(1)−F( |
∆
| )= |
∂f
| (y(1)−y( |
∆
| )) |
| f(2)−F( |
∆
| )= |
∂f
| (y(2)−y( |
∆
| )) |
| f(3)−F(∆)= |
∂f
| (y(3)−y(∆)) |
|
∂2
|
| (y(1)−y( |
∆
| )) |
|
∂f
|
|
|
d2y
| =0 |
|
∑ | yn/N=0 |
| ∆x2(g− |
∑ | gn /N) |
|
N ∑ 1 | (vi−μN)2 |
|
|
|
N!
|
|
|
| fkd3vk = |
∑ vi ∈ d3vk | ∆ti |
|
| 1 Initialize: | choose x0, r0=b−Ax0,
p0=r0, choose
,
, set k=1. | |||||||||||
| 2 Calculate α: |
| |||||||||||
| 3 Update rs, x: | rk = rk−1 − αk−1 Apk−1,
, | |||||||||||
| xk=xk−1 − αk−1 Apk−1. | ||||||||||||
| 4 Calculate β: |
| |||||||||||
| 5 Update ps: | pk=rk−βk,k−1pk−1
and
| |||||||||||
| 6 Convergence? | If not converged, increment k and repeat from 2. |
| 0= |
∂ρ
| =−∇.(ρv) |